Current Loop Transformed for a Rotating Charge

Introduction

            In this animation we have a circular conducting loop of radius a with current running along its circumference.  Just adjacent and above the loop (by δz) we also have a charge Q that is moving in the tangential direction with angular speed w and at radius a.  We would like to transform both the fixed charges and the moving mobile charges in the loop so that the external charge is stationary.  This will cause the loop's magnetic forces on Q to become zero and be converted to electric forces of the same value and direction.

 

Loop Kinematics

            Before transformation charge q test MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamiDaiaadwgacaWGZbGaamiDaaqabaaaaa@3AE2@  has the coordinates

r qtest (t)=a x ^ cosωt+a y ^ sinωt+ z ^ δz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamyCaiaadshacaWGLbGaam4CaiaadshaaeqaaOGaaiikaiaa dshacaGGPaGaeyypa0JaamyyaiqahIhagaqcaiGacogacaGGVbGaai 4CaiabeM8a3jaadshacqGHRaWkcaWGHbGabCyEayaajaGaci4Caiaa cMgacaGGUbGaeqyYdCNaamiDaiabgUcaRiqahQhagaqcaiabes7aKj aadQhaaaa@53DF@  

(1.1)

Similarly the velocity of q test MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamiDaiaadwgacaWGZbGaamiDaaqabaaaaa@3AE2@  is:

v qtest (t)=ωa x ^ sinωt+ωa y ^ cosωt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamyCaiaadshacaWGLbGaam4CaiaadshaaeqaaOGaaiikaiaa dshacaGGPaGaeyypa0JaeyOeI0IaeqyYdCNaamyyaiqahIhagaqcai GacohacaGGPbGaaiOBaiabeM8a3jaadshacqGHRaWkcqaHjpWDcaWG HbGabCyEayaajaGaci4yaiaac+gacaGGZbGaeqyYdCNaamiDaaaa@53D1@  

(1.2)

To cause the rotation rate of the loop to make the velocity of q test MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamiDaiaadwgacaWGZbGaamiDaaqabaaaaa@3AE2@  look like it's zero we choose to give the loop a rotation rate of the opposite sign

Ω loop = ω qtest MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axnaaBa aaleaacaWGSbGaam4Baiaad+gacaWGWbaabeaakiabg2da9iabgkHi TiabeM8a3naaBaaaleaacaWGXbGaamiDaiaadwgacaWGZbGaamiDaa qabaaaaa@4433@  

(1.3)

Then a  fixed charge, q f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamOzaaqabaaaaa@37F9@  , at initial angle ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGacKqzagaeaa aaaaaaa8qacqWFvpGzaaa@38CA@  in the loop will have the coordinates

r q f (t,ϕ)=a x ^ cos(Ωt+ϕ)+a y ^ sin(Ωt+ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamyCamaaBaaameaacaWGMbaabeaaaSqabaGccaGGOaGaamiD aiaacYcacqaHvpGzcaGGPaGaeyypa0JaamyyaiqahIhagaqcaiGaco gacaGGVbGaai4CaiaacIcacqqHPoWvcaWG0bGaey4kaSIaeqy1dyMa aiykaiabgUcaRiaadggaceWH5bGbaKaaciGGZbGaaiyAaiaac6gaca GGOaGaeuyQdCLaamiDaiabgUcaRiabew9aMjaacMcaaaa@5695@  

(1.4)

and its velocity will be

   v q f (t,ϕ)=Ωa x ^ sin(Ωt+ϕ)+Ωa y ^ cos(Ωt+ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaacckapaGaaCODamaaBaaaleaacaWGXbWaaSbaaWqaaiaa dAgaaeqaaaWcbeaakiaacIcacaWG0bGaaiilaiabew9aMjaacMcacq GH9aqpcqGHsislcqqHPoWvcaWGHbGabCiEayaajaGaci4CaiaacMga caGGUbGaaiikaiabfM6axjaadshacqGHRaWkcqaHvpGzcaGGPaGaey 4kaSIaeuyQdCLaamyyaiqahMhagaqcaiGacogacaGGVbGaai4Caiaa cIcacqqHPoWvcaWG0bGaey4kaSIaeqy1dyMaaiykaaaa@5D19@  

(1.5)

Further, a mobile charge, qm ,  at initial angle ψ, that contributes to the current by having a rotational rate of Ωm with respect to the loop will have coordinates:

 

r q m (t,ϕ)=a x ^ cos[(Ω+ Ω m )t+ψ]+a y ^ sin[(Ω+ Ω m )t+ψ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaamyCamaaBaaameaacaWGTbaabeaaaSqabaGccaGGOaGaamiD aiaacYcacqaHvpGzcaGGPaGaeyypa0JaamyyaiqahIhagaqcaiGaco gacaGGVbGaai4CaiaacUfacaGGOaGaeuyQdCLaey4kaSIaeuyQdC1a aSbaaSqaaiaad2gaaeqaaOGaaiykaiaadshacqGHRaWkcqaHipqEca GGDbGaey4kaSIaamyyaiqahMhagaqcaiGacohacaGGPbGaaiOBaiaa cUfacaGGOaGaeuyQdCLaey4kaSIaeuyQdC1aaSbaaSqaaiaad2gaae qaaOGaaiykaiaadshacqGHRaWkcqaHipqEcaGGDbaaaa@6158@  

(1.6)

and this same charge will have velocity:

v q m (t,ϕ)=a(Ω+ Ω m ){ x ^ sin[(Ω+ Ω m )t+ψ]+ y ^ cos[(Ω+ Ω m )t+ψ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamyCamaaBaaameaacaWGTbaabeaaaSqabaGccaGGOaGaamiD aiaacYcacqaHvpGzcaGGPaGaeyypa0JaamyyaiaacIcacqqHPoWvcq GHRaWkcqqHPoWvdaWgaaWcbaGaamyBaaqabaGccaGGPaGaai4Eaiab gkHiTiqahIhagaqcaiGacohacaGGPbGaaiOBaiaacUfacaGGOaGaeu yQdCLaey4kaSIaeuyQdC1aaSbaaSqaaiaad2gaaeqaaOGaaiykaiaa dshacqGHRaWkcqaHipqEcaGGDbGaey4kaSIabCyEayaajaGaci4yai aac+gacaGGZbGaai4waiaacIcacqqHPoWvcqGHRaWkcqqHPoWvdaWg aaWcbaGaamyBaaqabaGccaGGPaGaamiDaiabgUcaRiabeI8a5jaac2 facaGG9baaaa@69E2@  

(1.7)

 

Now let's assume that δz MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadQ haaaa@3890@  is very small so that only the loop's charges that are very close to q test MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamiDaiaadwgacaWGZbGaamiDaaqabaaaaa@3AE2@  can cause significant force on q test MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamiDaiaadwgacaWGZbGaamiDaaqabaaaaa@3AE2@ .  Also assume that the loop's counter-rotation started when t=0 so that the test charge was at coordinates (a,0). 

Then the loop charges that we have to be concerned with are going to be moving in the y direction.  Their spacing will be reduced by the factor 1/γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaGGVa Gaeq4SdCgaaa@3901@  where γ=1/ 1 (v/c) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9iaaigdacaGGVaWaaOaaaeaacaaIXaGaeyOeI0IaaiikaiaadAha caGGVaGaam4yaiaacMcadaahaaWcbeqaaiaaikdaaaaabeaaaaa@4097@  and v is their speed in the y direction and can never exceed c.  For the fixed charges we have

γ f =1/ 1 (Ωa/c) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGMbaabeaakiabg2da9iaaigdacaGGVaWaaOaaaeaacaaI XaGaeyOeI0IaaiikaiabfM6axjaadggacaGGVaGaam4yaiaacMcada ahaaWcbeqaaiaaikdaaaaabeaaaaa@4330@  

(1.8)

and for the mobile charges we have

γ f =1/ 1 [(Ω+ Ω m )a/c] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGMbaabeaakiabg2da9iaaigdacaGGVaWaaOaaaeaacaaI XaGaeyOeI0Iaai4waiaacIcacqqHPoWvcqGHRaWkcqqHPoWvdaWgaa WcbaGaamyBaaqabaGccaGGPaGaamyyaiaac+cacaWGJbGaaiyxamaa CaaaleqabaGaaGOmaaaaaeqaaaaa@4888@  

(1.9)

An example of the these transformations is shown in Figure 1.

Figure 1: The transformed current loop as viewed by the (now) stationary test charge on its right hand side.  The charge spacings on the right and left side are closer than the spacings on the top and bottom. In the program this is achieved by simply scaling of the (x,y) dimension as (1,1/γ).

 

An expression for the electric field in the z direction due to a linear charge density, λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37A0@  , that extends in the y direction from l to l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamiBaiaabccacaWG0bGaam4BaiaabccacaWGSbaaaa@3C0D@  is

E z = 2lλ 2π ε 0 z z 2 + l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGSbGaeq4U dWgabaGaaGOmaiabec8aWjabew7aLnaaBaaaleaacaaIWaaabeaaki aadQhadaGcaaqaaiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWGSbWaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa@472E@  

(1.10)

where (0,0,z) is the position of observation.  When l>>z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH+a GpcqGH+aGpcaWG6baaaa@39EB@  then equation (1.10) becomes

E z = 2λ 2π ε 0 z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqaH7oaBaeaa caaIYaGaeqiWdaNaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaamOEaa aaaaa@417F@  

(1.11)

            For relativistic speed there are two correction factors that must be applied to these electric field components.  First, λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37A0@  has to be corrected by multiplying by the appropriate 1/γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaGGVa Gaeq4SdCgaaa@3901@  of equations (1.8) and (1.9).  Then, for E fields perpendicular  to the direction of charge flow, the electric field of each elemental charge is enhanced by the factor γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNbaa@3793@  http://www.feynmanlectures.caltech.edu/II_26.html.  It would seem that, for the stationary test particle, the forces in the z direction require no relativistic transformation since the two correction factors cancel.

 

We can't expect to cancel the current by rotating the loop oppositely to the direction of the test charge.  We will still have a net current λ I v I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGjbaabeaakiaadAhadaWgaaWcbaGaamysaaqabaaaaa@3A99@  so we will still have a magnetic field.  However, that magnetic field will not exert a force on the stationary test particle  since its speed is zero.  But we will have a net charge associated with the speed of the current since moving charges spacing is less than static charge spacing.

 

Lorentz Boosts of Added Velocities

We will need to have the factors γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNbaa@3793@  for the sum of the negative charge speed, β I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaWGjbaabeaaaaa@3887@   and the rotational speed of the loop, β t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaWG0baabeaaaaa@38B2@  where generically β=v/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaadAhacaGGVaGaam4yaaaa@3B29@  .

The addition equation for β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@378D@  is

β IT = β I β t 1 β I β t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjaaxc W7daWgaaWcbaGaamysaiaadsfaaeqaaOGaeyypa0ZaaSaaaeaacqaH YoGydaWgaaWcbaGaamysaaqabaGccqGHsislcqaHYoGydaWgaaWcba GaamiDaaqabaaakeaacaaIXaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaa dMeaaeqaaOGaeqOSdi2aaSbaaSqaaiaadshaaeqaaaaaaaa@497C@  

(1.13)

Then we can write

1 γ IT 2 =1 β IT 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeo7aNnaaDaaaleaacaWGjbGaamivaaqaaiaaikdaaaaa aOGaeyypa0JaaGymaiabgkHiTiabek7aInaaDaaaleaacaWGjbGaam ivaaqaaiaaikdaaaaaaa@41D6@  

(1.14)

We can re-write equation (1.14) as

                                                                                                                                       (1.15)

1 ( γ IT ) 2 = (1 β I 2 )(1 β t 2 ) ( 1 β I β t ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaamaabmaabaGaeq4SdC2aa0baaSqaaiaadMeacaWGubaabaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9m aalaaabaGaaiikaiaaigdacqGHsislcqaHYoGydaqhaaWcbaGaamys aaqaaiaaikdaaaGccaGGPaGaaiikaiaaigdacqGHsislcqaHYoGyda qhaaWcbaGaamiDaaqaaiaaikdaaaGccaGGPaaabaWaaeWaaeaacaaI XaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaadMeaaeqaaOGaeqOSdi2aaS baaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI Yaaaaaaaaaa@544D@  

(1.16)

and re-naming some quantities using γ I =1/ 1 β I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGjbaabeaakiabg2da9iaaigdacaGGVaWaaOaaaeaacaaI XaGaeyOeI0IaeqOSdi2aa0baaSqaaiaadMeaaeaacaaIYaaaaaqaba aaaa@401B@  and γ t =1/ 1 β t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWG0baabeaakiabg2da9iaaigdacaGGVaWaaOaaaeaacaaI XaGaeyOeI0IaeqOSdi2aa0baaSqaaiaadshaaeaacaaIYaaaaaqaba aaaa@4071@  we obtain

γ IT 2 = γ I 2 γ t 2 (1 β I β t ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaDa aaleaacaWGjbGaamivaaqaaiaaikdaaaGccqGH9aqpcqaHZoWzdaqh aaWcbaGaamysaaqaaiaaikdaaaGccqaHZoWzdaqhaaWcbaGaamiDaa qaaiaaikdaaaGccaGGOaGaaGymaiabgkHiTiabek7aInaaBaaaleaa caWGjbaabeaakiabek7aInaaBaaaleaacaWG0baabeaakiaacMcada ahaaWcbeqaaiaaikdaaaaaaa@4B8C@  

(1.17)

It would at first seem that the linear charge density has to be multiplied by the factor:

λ I ' = γ I γ t (1 β I β t ) λ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaDa aaleaacaWGjbaabaGaai4jaaaakiabg2da9iabeo7aNnaaBaaaleaa caWGjbaabeaakiabeo7aNnaaBaaaleaacaWG0baabeaakiaacIcaca aIXaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaadMeaaeqaaOGaeqOSdi2a aSbaaSqaaiaadshaaeqaaOGaaiykaiabeU7aSnaaBaaaleaacaWGjb aabeaaaaa@4AFA@  

(1.18)

You should recall that the negative charge was moving prior to this transformation, and therefore charge spacings were contracted by 1 γ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeo7aNnaaBaaaleaacaWGjbaabeaaaaaaaa@3958@  prior to this transformation.  Thus to get the effective negative charge density this value of γ IT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGjbGaamivaaqabaaaaa@3966@  must be divided by γ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGjbaabeaaaaa@388D@  so that the factor multiplying the negative  charge density is:

λ I '= γ t (1 β I β t ) λ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGjbaabeaakiaacEcacqGH9aqpcqaHZoWzdaqhaaWcbaGa amiDaaqaaaaakiaacIcacaaIXaGaeyOeI0IaeqOSdi2aaSbaaSqaai aadMeaaeqaaOGaeqOSdi2aaSbaaSqaaiaadshaaeqaaOGaaiykaiab eU7aSnaaBaaaleaacaWGjbaabeaaaaa@484F@  

(1.19)

Obviously the negative charge density in the parts of the loop that are not just adjacent to the test charge would be changed to compensate for those near the  test particle.

The total charge density near the test charge is the sum of the positive and negative charge densities

λ'= λ 0 [1 γ t (1 β I β t )]= λ 0 β I β t γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjaacE cacqGH9aqpcqaH7oaBdaWgaaWcbaGaaGimaaqabaGccaGGBbGaaGym aiabgkHiTiabeo7aNnaaDaaaleaacaWG0baabaaaaOGaaiikaiaaig dacqGHsislcqaHYoGydaWgaaWcbaGaamysaaqabaGccqaHYoGydaWg aaWcbaGaamiDaaqabaGccaGGPaGaaiyxaiabg2da9iabeU7aSnaaBa aaleaacaaIWaaabeaakiabek7aInaaBaaaleaacaWGjbaabeaakiab ek7aInaaBaaaleaacaWG0baabeaakiabeo7aNnaaBaaaleaacaWG0b aabeaaaaa@5694@  

(1.20)

 When the law for transformation of the force from the charge's moving frame to the laboratory frame

F testchargestationary = γ t F moving MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiDaiaadwgacaWGZbGaamiDaiaaykW7caWGJbGaamiAaiGa cggacaGGYbGaai4zaiaadwgacaWGZbGaamiDaiaadggacaWG0bGaam yAaiaad+gacaWGUbGaamyyaiaadkhacaWG5baabeaakiabg2da9iab eo7aNnaaBaaaleaacaWG0baabeaakiaadAeadaWgaaWcbaGaamyBai aad+gacaWG2bGaamyAaiaad6gacaWGNbaabeaaaaa@55D3@  

(1.21)

is taken into account, the γ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWG0bGaaGPaVdqabaaaaa@3A43@  factor in equation (1.20) is factored out and the new electric force is the same as the magnetic force before transformation.