Derivation of Relative Clock Rates (Traditional View)

Introduction

            In an accelerated space trip where the traveler returns to an inertial frame at a younger age than the equivalent person who does not travel, the first question one might ask is "where and when did this differential aging occur".  One way of answering this question is to compare clock rates at equivalent times.  In this document I will derive these equivalent times from which the rate ratios can be obtained.

Equivalent Times

            Lines of constant time are obtained from  the Lorentz time transformation equation.

c T i =γ( ct xv c )+ C i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacaWGub WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Jaeq4SdC2aaeWaaeaacaGG JbGaamiDaiabgkHiTmaalaaabaGaamiEaiaadAhaaeaacaWGJbaaaa GaayjkaiaawMcaaiabgUcaRiaadoeadaWgaaWcbaGaamyAaaqabaaa aa@4587@  

(1.1)

where γ= 1 v 2 / c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maakaaabaGaaGymaiabgkHiTiaadAhadaahaaWcbeqaaiaaikda aaGccaGGVaGaam4yamaaCaaaleqabaGaaGOmaaaaaeqaaaaa@3EC3@  and Ci is a constant
 so that c t i =(v/c) x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacaWG0b WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaiikaiaadAhacaGGVaGa am4yaiaacMcacaWG4bWaaSbaaSqaaiaadMgaaeqaaaaa@3FFD@  and therefore these lines have, in the (ct,x) spacetime coordinate system, slope v/c.

In order to get the times in the inertial frame we first have to scale that frame.  For our acceleration program the total trip time is given by:

T end =4(c/a)sinh a t a c +2 t c cosh a t a c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacsfadaWgaa WcbaGaamyzaiaad6gacaWGKbaabeaakiabg2da9iaaisdacaGGOaGa am4yaiaac+cacaWGHbGaaiykaiGacohacaGGPbGaaiOBaiaacIgada WcaaqaaiaadggacaWG0bWaaSbaaSqaaiaadggaaeqaaaGcbaGaam4y aaaacqGHRaWkcaaIYaGaamiDamaaBaaaleaacaWGJbaabeaakiaaco gacaGGVbGaai4CaiaacIgadaWcaaqaaiaadggacaWG0bWaaSbaaSqa aiaadggaaeqaaaGcbaGaam4yaaaaaaa@5279@  

(1.2)

It is handy to have the value of the following integral

θ(t)= 0 t a(t')dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaacI cacaWG0bGaaiykaiabg2da9maapehabaGaamyyaiaacIcacaWG0bGa ai4jaiaacMcacaWGKbGaamiDaiaacEcaaSqaaiaaicdaaeaacaWG0b aaniabgUIiYdaaaa@4585@  

(1.3)

Then the value of v/c is

v/c=tanhθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaGGVa Gaam4yaiabg2da9iGacshacaGGHbGaaiOBaiaacIgacqaH4oqCaaa@3EFA@  

(1.4)

and the value of the rocket displacement x as a function of time is

x(t)=c 0 t tanhθ(t')dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcaWGJbWaa8qCaeaacaGG0bGaaiyyaiaa c6gacaGGObGaeqiUdeNaaiikaiaadshacaGGNaGaaiykaiaacsgaca GG0bGaai4jaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaaaa@4A3D@  

(1.5)

Now we must project the line from x(t) back to x=0 with slope v/c.  This results in

x 0 (t)=cttanhθ(t)x(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaWGJbGa amiDaiabgkHiTiGacshacaGGHbGaaiOBaiaacIgacqaH4oqCcaGGOa GaamiDaiaacMcacaWG4bGaaiikaiaadshacaGGPaaaaa@4912@  

(1.6)

The value of T(t) is obtained from the value of x0(t) by appropriate scaling of the left hand T axis:

cT(t)= T end 4 t a +2 t c x 0 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacaWGub GaaiikaiaadshacaGGPaGaeyypa0ZaaSaaaeaacaWGubWaaSbaaSqa aiaadwgacaWGUbGaamizaaqabaaakeaacaaI0aGaamiDamaaBaaale aacaWGHbaabeaakiabgUcaRiaaikdacaWG0bWaaSbaaSqaaiaadoga aeqaaaaakiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiDai aacMcaaaa@49B0@  

(1.7)

Relative Clock Rates

Having obtained cT(t) we can obtain the relative clock rates by the equation

dT dt (t)= T(t+δt/2)T(tδt/2) δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadsfaaeaacaWGKbGaamiDaaaacaGGOaGaamiDaiaacMcacqGH 9aqpdaWcaaqaaiaadsfacaGGOaGaamiDaiabgUcaRiabes7aKjaads hacaGGVaGaaGOmaiaacMcacqGHsislcaGGubGaaiikaiaacshacqGH sislcqaH0oazcaGG0bGaai4laiaaikdacaGGPaaabaGaeqiTdqMaam iDaaaaaaa@50CE@  

(1.8)