Rotor-Rotor Collision Kinetics

1. Similarity to Hard Disc Collisions

            Hard disc collisions involve momentum transfers along the lines separating the centers of the two discs of mass m.  By Newton's laws, the transfers have to be equal and opposite.  For variable mass discs, the momentum transfer to discs 1 and 2 is proportional to

δ p 2 = m 2 δ v 2 = m 1 δ v 1 M r δvc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahc hadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa ikdaaeqaaOGaeqiTdqMaaCODamaaBaaaleaacaaIYaaabeaakiabg2 da9iabgkHiTiaad2gadaWgaaWcbaGaaGymaaqabaGccqaH0oazcaWH 2bWaaSbaaSqaaiaaigdaaeqaaOGaeyyyIORaamytamaaBaaaleaaca WGYbaabeaakiabes7aKjaadAhacaWHJbaaaa@4EBA@  

(1.1)

where c is a unit vector pointing from the center of disc 1 to the center of disc 2

c= r 1 r 2 | r 1 r 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahogacqGH9a qpdaWcaaqaaiaahkhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWH YbWaaSbaaSqaaiaaikdaaeqaaaGcbaWaaqWaaeaacaWHYbWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaaIYaaabeaa aOGaay5bSlaawIa7aaaaaaa@449B@  

(1.2)

where the r's are the location vectors of the centers of the discs and Mr is a mass that is still to be determined along with δv.

Energy conservation requires that the energy after the collision is the same as that before the collision.

If v1 and v2 are the initial velocities of the discs, then the final and initial energies are:

1 2 m 1 ( m 1 v 1 M r δvc)( m 1 v 1 M r δvc)+ 1 2 m 2 ( m 2 v 2 + M r δvc)( m 2 v 2 + M r δvc)= 1 2 ( m 1 v 1 2 + m 2 v 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaakiaacIca caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODamaaBaaaleaacaaIXa aabeaakiabgkHiTiaad2eadaWgaaWcbaGaamOCaaqabaGccqaH0oaz caWG2bGaaC4yaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaaleaaca aIXaaabeaakiaahAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG nbWaaSbaaSqaaiaadkhaaeqaaOGaeqiTdqMaamODaiaahogacaGGPa Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaad2gadaWgaaWcbaGa aGOmaaqabaaaaOGaaiikaiaad2gadaWgaaWcbaGaaGOmaaqabaGcca WH2bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamytamaaBaaaleaa caWGYbaabeaakiabes7aKjaadAhacaWHJbGaaiykaiabgkci3kaacI cacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaCODamaaBaaaleaacaaI YaaabeaakiabgUcaRiaad2eadaWgaaWcbaGaamOCaaqabaGccqaH0o azcaWG2bGaaC4yaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaaaamaabmaabaGaamyBamaaBaaaleaacaaIXaaabeaakiaadAhada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqa aiaaikdaaeqaaOGaamODamaaDaaaleaacaaIYaaabaGaaGOmaaaaaO GaayjkaiaawMcaaaaa@7D3C@    

[ M r 2 δ v 2 2 ( 1 m 1 + 1 m 2 )+ M r δvc( v 2 v 1 ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaWaaS aaaeaacaWGnbWaaSbaaSqaaiaadkhaaeqaaOWaaWbaaSqabeaacaaI YaaaaOGaeqiTdqMaamODamaaCaaaleqabaGaaGOmaaaaaOqaaiaaik daaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGTbWaaSbaaSqaaiaa igdaaeqaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaad2gadaWgaa WcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaey4kaSIaamytamaa BaaaleaacaWGYbaabeaakiabes7aKjaadAhacaWHJbGaeyOiGCRaai ikaiaahAhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWH2bWaaSba aSqaaiaaigdaaeqaaOGaaiykaaGaay5waiaaw2faaiabg2da9iaaic daaaa@56CF@  

(1.3)


Solving for Mrδv we have:

M r δv=2c( v 2 v 1 ) m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamOCaaqabaGccqaH0oazcaWG2bGaeyypa0JaeyOeI0IaaGOm aiaahogacqGHIaYTcaGGOaGaaCODamaaBaaaleaacaaIYaaabeaaki abgkHiTiaahAhadaWgaaWcbaGaaGymaaqabaGccaGGPaWaaSaaaeaa caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamyBamaaBaaaleaacaaIYa aabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG TbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@4E47@  

(1.4)

Obviously the reduced mass is:

M r = 2 m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGTbWaaSba aSqaaiaaigdaaeqaaOGaamyBamaaBaaaleaacaaIYaaabeaaaOqaai aad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaaa@4222@  

(1.5)

and

δv=c( v 2 v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hacqGH9aqpcqGHsislcaWHJbGaeyOiGCRaaiikaiaahAhadaWgaaWc baGaaGOmaaqabaGccqGHsislcaWH2bWaaSbaaSqaaiaaigdaaeqaaO Gaaiykaaaa@4316@  

(1.6)

Then:

v 2 '= v 2 M r m 2 c( v 2 v 1 ) v 1 '= v 1 + M r m 1 c( v 2 v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaBaaaleaacaaIYaaabeaakiaacEcacqGH9aqpcaWH2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacaWGnbWaaSbaaSqaaiaadk haaeqaaaGcbaGaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWHJbGa eyOiGCRaaiikaiaahAhadaWgaaWcbaGaaGOmaaqabaGccqGHsislca WH2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiaahAhadaWgaaWc baGaaGymaaqabaGccaGGNaGaeyypa0JaaCODamaaBaaaleaacaaIXa aabeaakiabgUcaRmaalaaabaGaamytamaaBaaaleaacaWGYbaabeaa aOqaaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGaaC4yaiabgkci3k aacIcacaWH2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaCODamaa BaaaleaacaaIXaaabeaakiaacMcaaaaa@5BFA@  

(1.7)

2. Response of a Rotor to an Impulse Applied to One of Its End Masses

            The basic driver involved in hard object collisions is an impulse.  An impulse is the product of a force times a very small time increment which, of course, leads to a change in momentum like mδv where m is the mass and δv is the change in the velocity.  The time increment is small enough that there will be no significant rotation of the rotor or displacement of its center of mass within the duration of the impulse.  These motions will occur after the impulse.   

            The specific diagram for this problem is shown below.  To make the problem primitive and simple, both of the initial motions are nil. The final motion will be a combination of a center of mass velocity, δvx, and a final rotation, at rate δω, about the center of mass.    The impulse is along the -x direction as shown.

 

The change in x momentum is a combination of the change in center of mass velocity and rotation speed δω.  Here Px is the impulse Fxdt; Note that Px is negative.:

2(mδv+mlδωcosa)= P x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaGGOa GaamyBaiabes7aKjaadAhacqGHRaWkcaWGTbGaamiBaiabes7aKjab eM8a3jGacogacaGGVbGaai4CaiaadggacaGGPaGaeyypa0Jaamiuam aaBaaaleaacaWG4baabeaaaaa@4886@  

(1.8)

Solving for δω:

δω= P x 2mδv 2mlcosa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeM 8a3jabg2da9maalaaabaGaamiuamaaBaaaleaacaWG4baabeaakiab gkHiTiaaikdacaWGTbGaeqiTdqMaamODaaqaaiaaikdacaWGTbGaam iBaiGacogacaGGVbGaai4Caiaadggaaaaaaa@480E@  

(1.9)

The energy supplied by the impulse is Fxdx which is the same as Px<vx> where <vx> is the 1/2 of the final speed that will be obtained by the rotor.

Thus conservation of energy requires that:

mδ v 2 +m l 2 δ ω 2 = P x δv+lδωcosa 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqaH0o azcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyBaiaadYga daahaaWcbeqaaiaaikdaaaGccqaH0oazcqaHjpWDdaahaaWcbeqaai aaikdaaaGccqGH9aqpcaWGqbWaaSbaaSqaaiaadIhaaeqaaOWaaSaa aeaacqaH0oazcaWG2bGaey4kaSIaamiBaiabes7aKjabeM8a3jGaco gacaGGVbGaai4CaiaadggaaeaacaaIYaaaaaaa@5205@  

(1.10)

Inserting the solution for δω:

mδ v 2 +m l 2 ( P x 2mδv 2mlcosa ) 2 = P x δv+l( P x 2mδv 2mlcosa )cosa 2 = P x 2 4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqaH0o azcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyBaiaadYga daahaaWcbeqaaiaaikdaaaGcdaqadaqaamaalaaabaGaamiuamaaBa aaleaacaWG4baabeaakiabgkHiTiaaikdacaWGTbGaeqiTdqMaamOD aaqaaiaaikdacaWGTbGaamiBaiGacogacaGGVbGaai4Caiaadggaaa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0Jaamiu amaaBaaaleaacaWG4baabeaakmaalaaabaGaeqiTdqMaamODaiabgU caRiaadYgadaqadaqaamaalaaabaGaamiuamaaBaaaleaacaWG4baa beaakiabgkHiTiaaikdacaWGTbGaeqiTdqMaamODaaqaaiaaikdaca WGTbGaamiBaiGacogacaGGVbGaai4CaiaadggaaaaacaGLOaGaayzk aaGaci4yaiaac+gacaGGZbGaamyyaaqaaiaaikdaaaGaeyypa0ZaaS aaaeaacaWGqbWaaSbaaSqaaiaadIhaaeqaaOWaaWbaaSqabeaacaaI YaaaaaGcbaGaaGinaiaad2gaaaaaaa@6F4A@  

(1.11)

This is a quadratic equation.  Computing a, b, and c coefficients of δv2, δv1, and δv0.

a=m( 1+ 1 cos 2 a ) b=( P x cos 2 a ) c= P x 2 4m cos 2 a P x 2 4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyyai abg2da9iaad2gadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaaigda aeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaWGHb aaaaGaayjkaiaawMcaaaqaaiaadkgacqGH9aqpcqGHsisldaqadaqa amaalaaabaGaamiuamaaBaaaleaacaWG4baabeaaaOqaaiGacogaca GGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaadggaaaaacaGLOaGa ayzkaaaabaGaam4yaiabg2da9maalaaabaGaamiuamaaDaaaleaaca WG4baabaGaaGOmaaaaaOqaaiaaisdacaWGTbGaci4yaiaac+gacaGG ZbWaaWbaaSqabeaacaaIYaaaaOGaamyyaaaacqGHsisldaWcaaqaai aadcfadaqhaaWcbaGaamiEaaqaaiaaikdaaaaakeaacaaI0aGaamyB aaaaaaaa@5D26@  

(1.12)

b 2 4ac= P x 2 cos 4 a P x 2 ( 1+ 1 cos 2 a )( 1 cos 2 a 1 )= P x 2 cos 4 a + P x 2 ( 1 1 cos 4 a )= P x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamyyaiaadogacqGH9aqp daWcaaqaaiaadcfadaqhaaWcbaGaamiEaaqaaiaaikdaaaaakeaaci GGJbGaai4BaiaacohadaahaaWcbeqaaiaaisdaaaGccaWGHbaaaiab gkHiTiaadcfadaqhaaWcbaGaamiEaaqaaiaaikdaaaGcdaqadaqaai aaigdacqGHRaWkdaWcaaqaaiaaigdaaeaaciGGJbGaai4Baiaacoha daahaaWcbeqaaiaaikdaaaGccaWGHbaaaaGaayjkaiaawMcaamaabm aabaWaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbWaaWbaaSqa beaacaaIYaaaaOGaamyyaaaacqGHsislcaaIXaaacaGLOaGaayzkaa Gaeyypa0ZaaSaaaeaacaWGqbWaa0baaSqaaiaadIhaaeaacaaIYaaa aaGcbaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaI0aaaaOGaam yyaaaacqGHRaWkcaWGqbWaa0baaSqaaiaadIhaaeaacaaIYaaaaOWa aeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaci4yaiaac+ gacaGGZbWaaWbaaSqabeaacaaI0aaaaOGaamyyaaaaaiaawIcacaGL PaaacqGH9aqpcaWGqbWaa0baaSqaaiaadIhaaeaacaaIYaaaaaaa@7159@  

(1.13)

Solving the quadratic equation for δv we obtain:

δv= b± b 2 4ac 2a = P x cos 2 a ± P x 2m( 1+ 1 cos 2 a ) = P x 2m , P x ( 1 cos 2 a ) 2m( 1+ cos 2 a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hacqGH9aqpdaWcaaqaaiabgkHiTiaadkgacqGHXcqSdaGcaaqaaiaa dkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamyyaiaado gaaSqabaaakeaacaaIYaGaamyyaaaacqGH9aqpdaWcaaqaamaalaaa baGaamiuamaaBaaaleaacaWG4baabeaaaOqaaiGacogacaGGVbGaai 4CamaaCaaaleqabaGaaGOmaaaakiaadggaaaGaeyySaeRaamiuamaa BaaaleaacaWG4baabeaaaOqaaiaaikdacaWGTbWaaeWaaeaacaaIXa Gaey4kaSYaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbWaaWba aSqabeaacaaIYaaaaOGaamyyaaaaaiaawIcacaGLPaaaaaGaeyypa0 ZaaSaaaeaacaWGqbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaaGOmaiaa d2gaaaGaaiilamaalaaabaGaamiuamaaBaaaleaacaWG4baabeaakm aabmaabaGaaGymaiabgkHiTiGacogacaGGVbGaai4CamaaCaaaleqa baGaaGOmaaaakiaadggaaiaawIcacaGLPaaaaeaacaaIYaGaamyBam aabmaabaGaaGymaiabgUcaRiGacogacaGGVbGaai4CamaaCaaaleqa baGaaGOmaaaakiaadggaaiaawIcacaGLPaaaaaaaaa@7389@  

(1.14)

The first solution does not allow for the possibility of spin since it gives δω=0.  The second solution is more general and is valid for all cases where cos(a) is not equal to zero.

δω= P x cosa ml( 1+ cos 2 a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeM 8a3jabg2da9maalaaabaGaamiuamaaBaaaleaacaWG4baabeaakiGa cogacaGGVbGaai4CaiaadggaaeaacaWGTbGaamiBamaabmaabaGaaG ymaiabgUcaRiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaa kiaadggaaiaawIcacaGLPaaaaaaaaa@49E9@  

(1.15)

 

3. Rotor-Disc Collisions

            These are similar to hard disc collisions in terms of the momentum transfer.  However, the initial and final velocities of  each rotor end is a combination of the center of mass (CM) velocities and the rotational velocities.  Therefore the momentum changes due to both of these incident velocities have to be equal and opposite to that of the disc and the total energy due to both types of rotor velocity as well as that of the disc has to be the same before and after the collision.  For the time being we will limit ourselves to two dimensions (x,y).  We can state the r and v vectors in terms of the (x,y) coordinate system and the z axis will be the rotation axis.

 

v p = v CM + ω l(xsin a +ycos a ) v n = v CM ω l(xsin a +ycos a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaBaaaleaacaWGWbaabeaakiabg2da9iaahAhadaWgaaWcbaGaam4q aiaad2eaaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaaaqabaGccaWGSb GaaiikaiabgkHiTiaahIhaciGGZbGaaiyAaiaac6gacaWGHbWaaSba aSqaaaqabaGccqGHRaWkcaWH5bGaci4yaiaac+gacaGGZbGaamyyam aaBaaaleaaaeqaaOGaaiykaaqaaiaahAhadaWgaaWcbaGaamOBaaqa baGccqGH9aqpcaWH2bWaaSbaaSqaaiaadoeacaWGnbaabeaakiabgk HiTiabeM8a3naaBaaaleaaaeqaaOGaamiBaiaacIcacqGHsislcaWH 4bGaci4CaiaacMgacaGGUbGaamyyamaaBaaaleaaaeqaaOGaey4kaS IaaCyEaiGacogacaGGVbGaai4CaiaadggadaWgaaWcbaaabeaakiaa cMcaaaaa@63C1@  

(1.16)

where subscript p denotes one end (think positive) and n denotes the other end of the rotor, ω is the rotation speed of the rotor, l is half the distance between the rotor ends and a is the angle with respect to the x axis of the rotor's orientation.  So the program must check the distances between both the p and the n ends of each rotor and the center of the disc.  If this distance is less than or equal to the sum of the radius of the rotor end disc and that of the free disc, then a collision must be calculated.  Just as in the case of the hard discs, the momentum transfers must be equal and opposite.  However, unlike that case,  the momentum transfer to the rotor will be divided into rotational speed changes and velocity changes to the rotor's center of mass.

Figure 1: Illustration of rotor and a disc.  The rotor rotational angle with respect to the x axis  is  a and rotor center of mass velocity vr  The distance between the centers of the rotor end discs is 2l and the radius of the end discs is br while the single disc radius is bd Thus a collision is computed when the distance between disc center and either rotor end center is less than br+bdu is a unit vector along the length of the rotor, vω is a unit vector along the rotational velocity vector of the red end, and c is a unit vector along the line from the center of the disc to the red end of the rotor.  

The momentum transfer to the end of the rotor that is hit by the disc is equal and opposite to that transferred to the disc and both magnitudes are equal to an expression Mrδv

The expression for conservation of linear momentum is the following:                             

δ p d =δ p r = M r δvc m d δ v d c= m r δ v r c= M r δvc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaaCiCamaaBaaaleaacaWGKbaabeaakiabg2da9iabgkHiTiabes7a KjaahchadaWgaaWcbaGaamOCaaqabaGccqGH9aqpcqGHsislcaWGnb WaaSbaaSqaaiaadkhaaeqaaOGaeqiTdqMaamODaiaahogaaeaacaWG TbWaaSbaaSqaaiaadsgaaeqaaOGaeqiTdqMaamODamaaBaaaleaaca WGKbaabeaakiaahogacqGH9aqpcqGHsislcaWGTbWaaSbaaSqaaiaa dkhaaeqaaOGaeqiTdqMaamODamaaBaaaleaacaWGYbaabeaakiaaho gacqGH9aqpcqGHsislcaWGnbWaaSbaaSqaaiaadkhaaeqaaOGaeqiT dqMaamODaiaahogaaaaa@5DF0@  

(1.17)

where the quantity Mrδv will have to be determined by energy conservation and c is a unit vector along the line between centers of the free disc and the colliding end of the rotor disc.

In order to express the conservation of angular momentum, we must define the position of the composite center of mass (CM) including both ends of the rotor and the free disc.

 

r CM = m r 2 ( r p + r n )+ m d r d m r + m d r p = r r +l u r ; r n = r r l u r r d = r p ( b r + b d )c r CM = m r r r + m d [ r r +l u r ( b r + b d )c] m r + m d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCOCam aaBaaaleaacaWGdbGaamytaaqabaGccqGH9aqpdaWcaaqaamaalaaa baGaamyBamaaBaaaleaacaWGYbaabeaaaOqaaiaaikdaaaGaaiikai aahkhadaWgaaWcbaGaamiCaaqabaGccqGHRaWkcaWHYbWaaSbaaSqa aiaad6gaaeqaaOGaaiykaiabgUcaRiaad2gadaWgaaWcbaGaamizaa qabaGccaWHYbWaaSbaaSqaaiaadsgaaeqaaaGcbaGaamyBamaaBaaa leaacaWGYbaabeaakiabgUcaRiaad2gadaWgaaWcbaGaamizaaqaba aaaaGcbaGaaCOCamaaBaaaleaacaWHWbaabeaakiabg2da9iaahkha daWgaaWcbaGaaCOCaaqabaGccqGHRaWkcaWGSbGaaCyDamaaBaaale aacaWHYbaabeaakiaacUdacaaMc8UaaGPaVlaahkhadaWgaaWcbaGa amOBaaqabaGccqGH9aqpcaWHYbWaaSbaaSqaaiaahkhaaeqaaOGaey OeI0IaamiBaiaahwhadaWgaaWcbaGaaCOCaaqabaGccaaMc8UaaGPa VlaahkhadaWgaaWcbaGaamizaaqabaGccqGH9aqpcaWHYbWaaSbaaS qaaiaadchaaeqaaOGaeyOeI0IaaiikaiaadkgadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadsgaaeqaaOGaaiykai aahogaaeaacaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiabg2da 9maalaaabaGaamyBamaaBaaaleaacaWGYbaabeaakiaahkhadaWgaa WcbaGaamOCaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadsgaaeqa aOGaai4waiaahkhadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGSb GaaCyDamaaBaaaleaacaWGYbaabeaakiabgkHiTiaacIcacaWGIbWa aSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGKb aabeaakiaacMcacaWHJbGaaiyxaaqaaiaad2gadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadsgaaeqaaaaaaaaa@94BA@  

(1.18)

           

Then the angular momentum with respect to this CM is expressed as:

L= m r l 2 ω+ m r [( r r r CM )× v r ]+ m d [ r r +l u r ( b r + b d )c r CM )]× v d L ω + L v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamitai abg2da9iaad2gadaWgaaWcbaGaamOCaaqabaGccaWGSbWaaWbaaSqa beaacaaIYaaaaOGaeqyYdCNaey4kaSIaamyBamaaBaaaleaacaWGYb aabeaakiaacUfacaGGOaGaaCOCamaaBaaaleaacaWHYbaabeaakiab gkHiTiaahkhadaWgaaWcbaGaam4qaiaad2eaaeqaaOGaaiykaiabgE na0kaahAhadaWgaaWcbaGaamOCaaqabaGccaGGDbGaey4kaSIaamyB amaaBaaaleaacaWGKbaabeaakiaacUfacaWHYbWaaSbaaSqaaiaahk haaeqaaOGaey4kaSIaamiBaiaahwhadaWgaaWcbaGaaCOCaaqabaGc cqGHsislcaGGOaGaamOyamaaBaaaleaacaWGYbaabeaakiabgUcaRi aadkgadaWgaaWcbaGaamizaaqabaGccaGGPaGaaC4yaiabgkHiTiaa hkhadaWgaaWcbaGaam4qaiaad2eaaeqaaOGaaiykaiaac2facqGHxd aTcaWH2bWaaSbaaSqaaiaadsgaaeqaaaGcbaGaeyyyIORaamitamaa BaaaleaacqaHjpWDaeqaaOGaey4kaSIaamitamaaBaaaleaacaWG2b aabeaaaaaa@70FA@  

(1.19)

and, of course, all terms point along the z axis. 

Conservation of angular momentum requires that:

 

From this equation we can calculate δω

L ω '+ L v '= m r l 2 (ω+δω)+ m r [( r r r CM )×( v r +δ v r )]+ m d {[ r r +l u r ( b r + b d )c r CM ]×( v d +δ v d )} = m r l 2 ω+ m r [( r r r CM )× v r ]+ m d [ r r +l u r ( b r + b d )c r CM ]× v d = L ω + L v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamitam aaBaaaleaacqaHjpWDaeqaaOGaai4jaiabgUcaRiaadYeadaWgaaWc baGaamODaaqabaGccaGGNaGaeyypa0JaamyBamaaBaaaleaacaWGYb aabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqyYdCNa ey4kaSIaeqiTdqMaeqyYdCNaaiykaiabgUcaRiaad2gadaWgaaWcba GaamOCaaqabaGccaGGBbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacM cacqGHxdaTcaGGOaGaaCODamaaBaaaleaacaWGYbaabeaakiabgUca Riabes7aKjaahAhadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiyxai abgUcaRiaad2gadaWgaaWcbaGaamizaaqabaGccaGG7bGaai4waiaa hkhadaWgaaWcbaGaaCOCaaqabaGccqGHRaWkcaWGSbGaaCyDamaaBa aaleaacaWHYbaabeaakiabgkHiTiaacIcacaWGIbWaaSbaaSqaaiaa dkhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGKbaabeaakiaacM cacaWHJbGaeyOeI0IaaCOCamaaBaaaleaacaWGdbGaamytaaqabaGc caGGDbGaey41aqRaaiikaiaahAhadaWgaaWcbaGaamizaaqabaGccq GHRaWkcqaH0oazcaWH2bWaaSbaaSqaaiaadsgaaeqaaOGaaiykaiaa c2haaeaacqGH9aqpcaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaamiBam aaCaaaleqabaGaaGOmaaaakiabeM8a3jabgUcaRiaad2gadaWgaaWc baGaamOCaaqabaGccaGGBbGaaiikaiaahkhadaWgaaWcbaGaaCOCaa qabaGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaa cMcacqGHxdaTcaWH2bWaaSbaaSqaaiaadkhaaeqaaOGaaiyxaiabgU caRiaad2gadaWgaaWcbaGaamizaaqabaGccaGGBbGaaCOCamaaBaaa leaacaWHYbaabeaakiabgUcaRiaadYgacaWH1bWaaSbaaSqaaiaahk haaeqaaOGaeyOeI0IaaiikaiaadkgadaWgaaWcbaGaamOCaaqabaGc cqGHRaWkcaWGIbWaaSbaaSqaaiaadsgaaeqaaOGaaiykaiaahogacq GHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaac2facqGH xdaTcaWH2bWaaSbaaSqaaiaadsgaaeqaaOGaeyypa0JaamitamaaBa aaleaacqaHjpWDaeqaaOGaey4kaSIaamitamaaBaaaleaacaWG2baa beaaaaaa@BB91@              (1.20)

m r l 2 (δω)+ m r [( r r r CM )×δ v r ]+ m d [ r r +l u r ( b r + b d )c r CM )×(δ v d )]=0 δω= 1 l 2 { [( r r r CM )×δ v r ] m d m r [( r r +l u r ( b r + b d )c r CM )×δ v d ] }= 1 l 2 { [( r r r CM )×δ v r ] m d m r [( r d r CM )×δ v d ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGc caGGOaGaeqiTdqMaeqyYdCNaaiykaiabgUcaRiaad2gadaWgaaWcba GaamOCaaqabaGccaGGBbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacM cacqGHxdaTcqaH0oazcaWH2bWaaSbaaSqaaiaadkhaaeqaaOGaaiyx aiabgUcaRiaad2gadaWgaaWcbaGaamizaaqabaGccaGGBbGaaCOCam aaBaaaleaacaWHYbaabeaakiabgUcaRiaadYgacaWH1bWaaSbaaSqa aiaahkhaaeqaaOGaeyOeI0IaaiikaiaadkgadaWgaaWcbaGaamOCaa qabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadsgaaeqaaOGaaiykaiaa hogacqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacM cacqGHxdaTcaGGOaGaeqiTdqMaaCODamaaBaaaleaacaWGKbaabeaa kiaacMcacaGGDbGaeyypa0JaaGimaaqaaiabes7aKjabeM8a3jabg2 da9iabgkHiTmaalaaabaGaaGymaaqaaiaadYgadaahaaWcbeqaaiaa ikdaaaaaaOWaaiWaaeaacaGGBbGaaiikaiaahkhadaWgaaWcbaGaaC OCaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaa kiaacMcacqGHxdaTcqaH0oazcaWH2bWaaSbaaSqaaiaadkhaaeqaaO GaaiyxaiabgkHiTmaalaaabaGaamyBamaaBaaaleaacaWGKbaabeaa aOqaaiaad2gadaWgaaWcbaGaamOCaaqabaaaaOGaai4waiaacIcaca WHYbWaaSbaaSqaaiaahkhaaeqaaOGaey4kaSIaamiBaiaahwhadaWg aaWcbaGaaCOCaaqabaGccqGHsislcaGGOaGaamOyamaaBaaaleaaca WGYbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamizaaqabaGccaGG PaGaaC4yaiabgkHiTiaahkhadaWgaaWcbaGaam4qaiaad2eaaeqaaO GaaiykaiabgEna0kabes7aKjaahAhadaWgaaWcbaGaamizaaqabaGc caGGDbaacaGL7bGaayzFaaGaeyypa0dabaWaaSaaaeaacaaIXaaaba GaamiBamaaCaaaleqabaGaaGOmaaaaaaGcdaGadaqaaiaacUfacaGG OaGaaCOCamaaBaaaleaacaWHYbaabeaakiabgkHiTiaahkhadaWgaa WcbaGaam4qaiaad2eaaeqaaOGaaiykaiabgEna0kabes7aKjaahAha daWgaaWcbaGaamOCaaqabaGccaGGDbGaeyOeI0YaaSaaaeaacaWGTb WaaSbaaSqaaiaadsgaaeqaaaGcbaGaamyBamaaBaaaleaacaWGYbaa beaaaaGccaGGBbGaaiikaiaahkhadaWgaaWcbaGaamizaaqabaGccq GHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacMcacqGH xdaTcqaH0oazcaWH2bWaaSbaaSqaaiaadsgaaeqaaOGaaiyxaaGaay 5Eaiaaw2haaaaaaa@D329@  

(1.21)

The collision produces a torque impulse equal to

δτ= m r δ v r ( r r r CM )×c m d δ v d ( r d r CM )×c= M r δ v r ( r r r CM )×cδv M r δv( r d r CM )×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaeqiXdqNaeyypa0JaamyBamaaBaaaleaacaWGYbaabeaakiabes7a KjaadAhadaWgaaWcbaGaamOCaaqabaGccaGGOaGaaCOCamaaBaaale aacaWHYbaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaC4qaiaah2ea aeqaaOGaaCykaiabgEna0kaahogacqGHsislcaWGTbWaaSbaaSqaai aadsgaaeqaaOGaeqiTdqMaamODamaaBaaaleaacaWGKbaabeaakiaa cIcacaWHYbWaaSbaaSqaaiaadsgaaeqaaOGaeyOeI0IaaCOCamaaBa aaleaacaWHdbGaaCytaaqabaGccaWHPaGaey41aqRaaC4yaiabg2da 9aqaaiaad2eadaWgaaWcbaGaamOCaaqabaGccqaH0oazcaWG2bWaaS baaSqaaiaadkhaaeqaaOGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqa baGccqGHsislcaWHYbWaaSbaaSqaaiaahoeacaWHnbaabeaakiaahM cacqGHxdaTcaWHJbGaeqiTdqMaamODaiabgkHiTiaad2eadaWgaaWc baGaamOCaaqabaGccqaH0oazcaWG2bGaaiikaiaahkhadaWgaaWcba GaamizaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaahoeacaWHnbaa beaakiaahMcacqGHxdaTcaWHJbaaaaa@7F19@  

(1.22)

Note that rr-rCM points in the opposite direction from rd-rCM.  In fact, we have simple expressions for these vectors:

r r r CM = ( m r + m d ) r r m r + m d m r r r + m d [ r r +l u r ( b r + b d )c] m r + m d = m d [l u r ( b r + b d )c] m r + m d r d r CM = ( m r + m d )[ r r +l u r ( b r + b d )c] m r + m d m r r r + m d [ r r +l u r ( b r + b d )c] m r + m d = m r [l u r ( b r + b d )c] m r + m d r r r CM ( r d r CM )=2 m d [l u r ( b r + b d )c] m r + m d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOCam aaBaaaleaacaWGYbaabeaakiabgkHiTiaahkhadaWgaaWcbaGaam4q aiaad2eaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamyBamaaBaaale aacaWGYbaabeaakiabgUcaRiaad2gadaWgaaWcbaGaamizaaqabaGc caGGPaGaamOCamaaBaaaleaacaWGYbaabeaaaOqaaiaad2gadaWgaa WcbaGaamOCaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadsgaaeqa aaaakiabgkHiTmaalaaabaGaamyBamaaBaaaleaacaWGYbaabeaaki aahkhadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGTbWaaSbaaSqa aiaadsgaaeqaaOGaai4waiaahkhadaWgaaWcbaGaamOCaaqabaGccq GHRaWkcaWGSbGaaCyDamaaBaaaleaacaWGYbaabeaakiabgkHiTiaa cIcacaWGIbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaWGKbaabeaakiaacMcacaWHJbGaaiyxaaqaaiaad2gadaWg aaWcbaGaamOCaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadsgaae qaaaaakiabg2da9aqaamaalaaabaGaeyOeI0IaamyBamaaBaaaleaa caWGKbaabeaakiaacUfacaWGSbGaaCyDamaaBaaaleaacaWGYbaabe aakiabgkHiTiaacIcacaWGIbWaaSbaaSqaaiaadkhaaeqaaOGaey4k aSIaamOyamaaBaaaleaacaWGKbaabeaakiaacMcacaWHJbGaaiyxaa qaaiaad2gadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGTbWaaSba aSqaaiaadsgaaeqaaaaaaOqaaiaadkhadaWgaaWcbaGaamizaaqaba GccqGHsislcaWGYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiabg2da 9maalaaabaGaaiikaiaad2gadaWgaaWcbaGaamOCaaqabaGccqGHRa WkcaWGTbWaaSbaaSqaaiaadsgaaeqaaOGaaiykaiaacUfacaWHYbWa aSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamiBaiaahwhadaWgaaWcba GaamOCaaqabaGccqGHsislcaGGOaGaamOyamaaBaaaleaacaWGYbaa beaakiabgUcaRiaadkgadaWgaaWcbaGaamizaaqabaGccaGGPaGaaC 4yaiaac2faaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIa amyBamaaBaaaleaacaWGKbaabeaaaaGccqGHsisldaWcaaqaaiaad2 gadaWgaaWcbaGaamOCaaqabaGccaWHYbWaaSbaaSqaaiaadkhaaeqa aOGaey4kaSIaamyBamaaBaaaleaacaWGKbaabeaakiaacUfacaWHYb WaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamiBaiaahwhadaWgaaWc baGaamOCaaqabaGccqGHsislcaGGOaGaamOyamaaBaaaleaacaWGYb aabeaakiabgUcaRiaadkgadaWgaaWcbaGaamizaaqabaGccaGGPaGa aC4yaiaac2faaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaS IaamyBamaaBaaaleaacaWGKbaabeaaaaGccqGH9aqpaeaadaWcaaqa aiaad2gadaWgaaWcbaGaamOCaaqabaGccaGGBbGaamiBaiaahwhada WgaaWcbaGaamOCaaqabaGccqGHsislcaGGOaGaamOyamaaBaaaleaa caWGYbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamizaaqabaGcca GGPaGaaC4yaiaac2faaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaWGKbaabeaaaaaakeaacaWGYbWaaS baaSqaaiaadkhaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGdbGa amytaaqabaGccqGHsislcaGGOaGaamOCamaaBaaaleaacaWGKbaabe aakiabgkHiTiaadkhadaWgaaWcbaGaam4qaiaad2eaaeqaaOGaaiyk aiabg2da9iabgkHiTiaaikdadaWcaaqaaiaad2gadaWgaaWcbaGaam izaaqabaGccaGGBbGaamiBaiaahwhadaWgaaWcbaGaamOCaaqabaGc cqGHsislcaGGOaGaamOyamaaBaaaleaacaWGYbaabeaakiabgUcaRi aadkgadaWgaaWcbaGaamizaaqabaGccaGGPaGaaC4yaiaac2faaeaa caWGTbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamyBamaaBaaale aacaWGKbaabeaaaaaaaaa@F802@  

(1.23)

δτ=2 M r δv m d [l u r ( b r + b d )c] m r + m d ×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabes 8a0jabg2da9iabgkHiTiaaikdacaWGnbWaaSbaaSqaaiaadkhaaeqa aOGaeqiTdqMaamODamaalaaabaGaamyBamaaBaaaleaacaWGKbaabe aakiaacUfacaWGSbGaaCyDamaaBaaaleaacaWGYbaabeaakiabgkHi TiaacIcacaWGIbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamOyam aaBaaaleaacaWGKbaabeaakiaacMcacaWHJbGaaiyxaaqaaiaad2ga daWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaads gaaeqaaaaakiabgEna0kaahogaaaa@57E3@  

(1.24)

where Mrδv is computed below.  The rotation rate of the rotor has to compensate for this torque in order to conserve angular momentum.

m r l 2 δω=δτ=2 M r δv m d [l u r ( b r + b d )c] m r + m d ×c=2 M r δvl m d m r + m d u r ×c δω=2 M r δv m r l m d m r + m d u r ×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGc cqaH0oazcqaHjpWDcqGH9aqpcqGHsislcqaH0oazcqaHepaDcqGH9a qpcaaIYaGaamytamaaBaaaleaacaWGYbaabeaakiabes7aKjaadAha daWcaaqaaiaad2gadaWgaaWcbaGaamizaaqabaGccaGGBbGaamiBai aahwhadaWgaaWcbaGaamOCaaqabaGccqGHsislcaGGOaGaamOyamaa BaaaleaacaWGYbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamizaa qabaGccaGGPaGaaC4yaiaac2faaeaacaWGTbWaaSbaaSqaaiaadkha aeqaaOGaey4kaSIaamyBamaaBaaaleaacaWGKbaabeaaaaGccqGHxd aTcaWHJbGaeyypa0JaaGOmaiaad2eadaWgaaWcbaGaamOCaaqabaGc cqaH0oazcaWG2bGaamiBamaalaaabaGaamyBamaaBaaaleaacaWGKb aabeaaaOqaaiaad2gadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWG TbWaaSbaaSqaaiaadsgaaeqaaaaakiaahwhadaWgaaWcbaGaamOCaa qabaGccqGHxdaTcaWHJbaabaGaeqiTdqMaeqyYdCNaeyypa0JaaGOm amaalaaabaGaamytamaaBaaaleaacaWGYbaabeaakiabes7aKjaadA haaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaamiBaaaadaWcaaqa aiaad2gadaWgaaWcbaGaamizaaqabaaakeaacaWGTbWaaSbaaSqaai aadkhaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaWGKbaabeaaaaGc caWH1bWaaSbaaSqaaiaadkhaaeqaaOGaey41aqRaaC4yaaaaaa@8D6C@  

(1.25)

 

It should be understood that the orientation (angle a) of the rotor cannot change instantaneously and is therefore the same after the collision as before.

In addition to the momentum conservation, conservation of energy requires that the translational energy before and after the collision be the same and, separately, that the rotational energy about the CM before and after the collision be the same.  The reason that translational energy has to be the same is that the velocity, vCM, of the center of mass cannot change and therefore the product (mr+md)vCM2/2 can't change.  Since the total energy cannot change either, that also means that the rotational energy can't change.

 

            In the following equations I compute the value of the δv in equation 1.17:

m d 2 2 m d ( v d M r δv m d c)( v d M r δv m d c)+ 2 m r 2 2 m r ( v r + M r δv m r c)( v r + M r δv m r c)= m d 2 v d 2 2 m d + m r 2 2 m r ( v r )( v r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGTbWaaSbaaSqaaiaadsgaaeqaaOWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGOmaiaad2gadaWgaaWcbaGaamizaaqabaaaaOGaaiikai aahAhadaWgaaWcbaGaamizaaqabaGccqGHsisldaWcaaqaaiaad2ea daWgaaWcbaGaamOCaaqabaGccqaH0oazcaWG2baabaGaamyBamaaBa aaleaacaWGKbaabeaaaaGccaWHJbGaaiykaiabgkci3kaacIcacaWH 2bWaaSbaaSqaaiaadsgaaeqaaOGaeyOeI0YaaSaaaeaacaWGnbWaaS baaSqaaiaadkhaaeqaaOGaeqiTdqMaamODaaqaaiaad2gadaWgaaWc baGaamizaaqabaaaaOGaaC4yaiaacMcacqGHRaWkdaWcaaqaaiaaik dacaWGTbWaaSbaaSqaaiaadkhaaeqaaOWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGOmaiaad2gadaWgaaWcbaGaamOCaaqabaaaaOGaaiikai aahAhadaWgaaWcbaGaamOCaaqabaGccqGHRaWkdaWcaaqaaiaad2ea daWgaaWcbaGaamOCaaqabaGccqaH0oazcaWG2baabaGaamyBamaaBa aaleaacaWGYbaabeaaaaGccaWHJbGaaiykaiabgkci3kaacIcacaWH 2bWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSYaaSaaaeaacaWGnbWaaS baaSqaaiaadkhaaeqaaOGaeqiTdqMaamODaaqaaiaad2gadaWgaaWc baGaamOCaaqabaaaaOGaaC4yaiaacMcacqGH9aqpaeaadaWcaaqaai aad2gadaqhaaWcbaGaamizaaqaaiaaikdaaaGccaWG2bWaa0baaSqa aiaadsgaaeaacaaIYaaaaaGcbaGaaGOmaiaad2gadaWgaaWcbaGaam izaaqabaaaaOGaey4kaSYaaSaaaeaacaWGTbWaaSbaaSqaaiaadkha aeqaaOWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2gadaWgaa WcbaGaamOCaaqabaaaaOGaaiikaiaahAhadaWgaaWcbaGaamOCaaqa baGccaGGPaGaeyOiGCRaaiikaiaahAhadaWgaaWcbaGaamOCaaqaba GccaGGPaaaaaa@8FD0@  

(1.26)

Gathering terms in δv2 and δv we have:

M r 2 2 m d δ v 2 + M r 2 2 m r δ v 2 + M r δv[ v d c+( v r )c]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytamaaDaaaleaacaWGYbaabaGaaGOmaaaaaOqaaiaaikdacaWGTbWa aSbaaSqaaiaadsgaaeqaaaaakiabes7aKjaadAhadaahaaWcbeqaai aaikdaaaGccqGHRaWkdaWcaaqaaiaad2eadaqhaaWcbaGaamOCaaqa aiaaikdaaaaakeaacaaIYaGaamyBamaaBaaaleaacaWGYbaabeaaaa GccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyt amaaBaaaleaacaWGYbaabeaakiabes7aKjaadAhacaGGBbGaeyOeI0 IaaCODamaaBaaaleaacaWHKbaabeaakiabgkci3kaahogacqGHRaWk caGGOaGaaCODamaaBaaaleaacaWGYbaabeaakiaacMcacqGHIaYTca WHJbGaaiyxaiabg2da9iaaicdaaaa@5E8C@  

(1.27)

M r 2 δ v 2 ( 1 2 m d + 1 2 m r ) M r δv[ v d c( v r )c]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaqhaa WcbaGaamOCaaqaaiaaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaa caaIYaaaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaaIYaGaamyBam aaBaaaleaacaWGKbaabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaa caaIYaGaamyBamaaBaaaleaacaWGYbaabeaaaaaakiaawIcacaGLPa aacqGHsislcaWGnbWaaSbaaSqaaiaadkhaaeqaaOGaeqiTdqMaamOD aiaacUfacaWH2bWaaSbaaSqaaiaahsgaaeqaaOGaeyOiGCRaaC4yai abgkHiTiaacIcacaWH2bWaaSbaaSqaaiaadkhaaeqaaOGaaiykaiab gkci3kaahogacaGGDbGaeyypa0JaaGimaaaa@5A65@  

(1.28)

M r δv= 2 m d m r m d + m r [ v d c v r c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaqhaa WcbaGaamOCaaqaaaaakiabes7aKjaadAhacqGH9aqpdaWcaaqaaiaa ikdacaWGTbWaaSbaaSqaaiaadsgaaeqaaOGaamyBamaaBaaaleaaca WGYbaabeaaaOqaaiaad2gadaWgaaWcbaGaamizaaqabaGccqGHRaWk caWGTbWaaSbaaSqaaiaadkhaaeqaaaaakiaacUfacaWH2bWaaSbaaS qaaiaahsgaaeqaaOGaeyOiGCRaaC4yaiabgkHiTiaahAhadaWgaaWc baGaamOCaaqabaGccqGHIaYTcaWHJbGaaiyxaaaa@517C@  

(1.29)

Using this expression in equation 1.17 we have the following values of δv d and δv r:

δ v r = M r δv m r = 2 m d m d + m r [ v d c v r c] δ v d = M r δv m d = 2 m r m d + m r [ v d c v r c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaamODamaaBaaaleaacaWGYbaabeaakiabg2da9maalaaabaGaamyt amaaBaaaleaacaWGYbaabeaakiabes7aKjaadAhaaeaacaWGTbWaaS baaSqaaiaadkhaaeqaaaaakiabg2da9maalaaabaGaaGOmaiaad2ga daWgaaWcbaGaamizaaqabaaakeaacaWGTbWaaSbaaSqaaiaadsgaae qaaOGaey4kaSIaamyBamaaBaaaleaacaWGYbaabeaaaaGccaGGBbGa aCODamaaBaaaleaacaWHKbaabeaakiabgkci3kaahogacqGHsislca WH2bWaaSbaaSqaaiaadkhaaeqaaOGaeyOiGCRaaC4yaiaac2faaeaa cqaH0oazcaWG2bWaaSbaaSqaaiaadsgaaeqaaOGaeyypa0JaeyOeI0 YaaSaaaeaacaWGnbWaaSbaaSqaaiaadkhaaeqaaOGaeqiTdqMaamOD aaqaaiaad2gadaWgaaWcbaGaamizaaqabaaaaOGaeyypa0JaeyOeI0 YaaSaaaeaacaaIYaGaamyBamaaBaaaleaacaWGYbaabeaaaOqaaiaa d2gadaWgaaWcbaGaamizaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaai aadkhaaeqaaaaakiaacUfacaWH2bWaaSbaaSqaaiaahsgaaeqaaOGa eyOiGCRaaC4yaiabgkHiTiaahAhadaWgaaWcbaGaamOCaaqabaGccq GHIaYTcaWHJbGaaiyxaaaaaa@78A4@  

(1.30)

which is the same as the expression for hard sphere collisions derived above.  Strangely, when the equation 1.31 results are used in equation 1.17 and the latter results are inserted into equation 1.25,  we obtain the change in rotation rate without resorting to conservation of angular rotation energy.

M r δv= 2 m d m r m d + m r [ v d c v r c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaqhaa WcbaGaamOCaaqaaaaakiabes7aKjaadAhacqGH9aqpdaWcaaqaaiaa ikdacaWGTbWaaSbaaSqaaiaadsgaaeqaaOGaamyBamaaBaaaleaaca WGYbaabeaaaOqaaiaad2gadaWgaaWcbaGaamizaaqabaGccqGHRaWk caWGTbWaaSbaaSqaaiaadkhaaeqaaaaakiaacUfacaWH2bWaaSbaaS qaaiaahsgaaeqaaOGaeyOiGCRaaC4yaiabgkHiTiaahAhadaWgaaWc baGaamOCaaqabaGccqGHIaYTcaWHJbGaaiyxaaaa@517C@  

(1.31)

Our final result for δω is:

m r l 2 δω=2 M r δvl m d m r + m d u r ×c=4l m d 2 m r ( m d + m r ) 2 [ v d c v r c]( u r ×c) δω=4 m d 2 ( m d + m r ) 2 [ v d c v r c] l ( u r ×c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGc cqaH0oazcqaHjpWDcqGH9aqpcaaIYaGaamytamaaBaaaleaacaWGYb aabeaakiabes7aKjaadAhacaWGSbWaaSaaaeaacaWGTbWaaSbaaSqa aiaadsgaaeqaaaGcbaGaamyBamaaBaaaleaacaWGYbaabeaakiabgU caRiaad2gadaWgaaWcbaGaamizaaqabaaaaOGaaCyDamaaBaaaleaa caWGYbaabeaakiabgEna0kaahogacqGH9aqpcaaI0aGaamiBamaala aabaGaamyBamaaBaaaleaacaWGKbaabeaakmaaCaaaleqabaGaaGOm aaaakiaad2gadaWgaaWcbaGaamOCaaqabaaakeaadaqadaqaaiaad2 gadaWgaaWcbaGaamizaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaa dkhaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaki aacUfacaWH2bWaaSbaaSqaaiaahsgaaeqaaOGaeyOiGCRaaC4yaiab gkHiTiaahAhadaWgaaWcbaGaamOCaaqabaGccqGHIaYTcaWHJbGaai yxaiaacIcacaWH1bWaaSbaaSqaaiaadkhaaeqaaOGaey41aqRaaC4y aiaacMcaaeaacqaH0oazcqaHjpWDcqGH9aqpcaaI0aWaaSaaaeaaca WGTbWaaSbaaSqaaiaadsgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaGc baWaaeWaaeaacaWGTbWaaSbaaSqaaiaadsgaaeqaaOGaey4kaSIaam yBamaaBaaaleaacaWGYbaabeaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaaaaGcdaWcaaqaaiaacUfacaWH2bWaaSbaaSqaaiaahs gaaeqaaOGaeyOiGCRaaC4yaiabgkHiTiaahAhadaWgaaWcbaGaamOC aaqabaGccqGHIaYTcaWHJbGaaiyxaaqaaiaadYgaaaGaaiikaiaahw hadaWgaaWcbaGaamOCaaqabaGccqGHxdaTcaWHJbGaaiykaaaaaa@9631@  

(1.32)

 

 

4. Rotor-Rotor Collisions

Figure 2: Illustration of 2 rotors colliding .  The rotor and center of mass velocity vCM  The distance between the centers of the rotor end discs is 2l and the radius of the end discs is br  Thus a collision is computed when the distance between disc center and either rotor end center is less than 2bru is a unit vector along the length of the rotor, vω is a unit vector along the rotational velocity vector of the red end, and c is a unit vector along the line from the center of one rotor's end disc to the center of the one of the end discs of the other rotor.  

 

            Regardless of internal rotation of the rotors, the  momentum of the composite center of mass cannot change without some outside force which, in the absence of the walls, we don't have.  

δ p 1 =δ p 2 = M r δvc m 1 δ v 1 = m 2 δ v 2 = M r δvc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaaCiCamaaBaaaleaacaaIXaaabeaakiabg2da9iabgkHiTiabes7a KjaahchadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGnbWaaSbaaS qaaiaadkhaaeqaaOGaeqiTdqMaamODaiaahogaaeaacaWGTbWaaSba aSqaaiaaigdaaeqaaOGaeqiTdqMaaCODamaaBaaaleaacaaIXaaabe aakiabg2da9iabgkHiTiaad2gadaWgaaWcbaGaaGOmaaqabaGccqaH 0oazcaWH2bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamytamaaBa aaleaacaWGYbaabeaakiabes7aKjaadAhacaWHJbaaaaa@590B@  

(1.33)

Since the change in momentum can only be along c, we may drop the vectorial notation for δv1 and δv2:

m 1 δ v 1 = m 2 δ v 2 = M r δv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaeyypa0JaeyOeI0IaamyBamaaBaaaleaacaaIYaaabeaakiabes 7aKjaadAhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGnbWaaSba aSqaaiaadkhaaeqaaOGaeqiTdqMaamODaaaa@486D@  

(1.34)

 

Conservation of angular momentum requires that the following equation be true:

l 2 ( m 1 δ ω 1 + m 2 δ ω 2 )+ 1 2 [ m 1 (2 r 2 2 r CM )×(δ v 1 )+ m 2 (2 r 2 2 r CM )×(δ v 2 )] m 1 δ ω 1 + m 2 δ ω 2 = 1 l 2 [ m 1 ( r 1 r CM )×(δ v 1 )+ m 2 ( r 2 r CM )×(δ v 2 )]f(δv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiBam aaCaaaleqabaGaaGOmaaaakiaacIcacaWGTbWaaSbaaSqaaiaaigda aeqaaOGaeqiTdqMaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamyBamaaBaaaleaacaaIYaaabeaakiabes7aKjabeM8a3naaBaaa leaacaaIYaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaaiaacUfacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaa ikdacaWHYbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaGOmaiaahk hadaWgaaWcbaGaam4qaiaad2eaaeqaaOGaaiykaiabgEna0kaacIca cqaH0oazcaWH2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRi aad2gadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaaGOmaiaahkhadaWg aaWcbaGaaGOmaaqabaGccqGHsislcaaIYaGaaCOCamaaBaaaleaaca WGdbGaamytaaqabaGccaGGPaGaey41aqRaaiikaiabes7aKjaahAha daWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiyxaaqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccqaH0oazcqaHjpWDdaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaeqiTdqMaeq yYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaa caaIXaaabaGaamiBamaaCaaaleqabaGaaGOmaaaaaaGccaGGBbGaam yBamaaBaaaleaacaaIXaaabeaakiaacIcacaWHYbWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGdbGaamytaaqaba GccaGGPaGaey41aqRaaiikaiabes7aKjaahAhadaWgaaWcbaGaaGym aaqabaGccaGGPaGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaki aacIcacaWHYbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaCOCamaa BaaaleaacaWGdbGaamytaaqabaGccaGGPaGaey41aqRaaiikaiabes 7aKjaahAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiyxaiabggMi 6kaadAgacaGGOaGaeqiTdqMaamODaiaacMcaaaaa@A996@  

(1.35)

Therefore δω1 can be calculated as:

δ ω 1 = 1 m 1 { f(δv) m 2 δ ω 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeM 8a3naaBaaaleaacaaIXaaabeaakiabg2da9iabgkHiTmaalaaabaGa aGymaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOWaaiWaaeaaca WGMbGaaiikaiabes7aKjaadAhacaGGPaGaeyOeI0IaamyBamaaBaaa leaacaaIYaaabeaakiabes7aKjabeM8a3naaBaaaleaacaaIYaaabe aaaOGaay5Eaiaaw2haaaaa@4D39@  

(1.36)

Since either rotor 1 or rotor 2 could change rotation speed to compensate for the torque impulse induced by the collision, I also need to invoke conservation of rotational energy to compute δω2.

The energy associated with angular momentum is the same before and after the collision

E L '= 1 2 l 2 ( m 1 ω 1 2 + m 2 ω 2 2 +2 m 1 ω 1 δ ω 1 +2 m 2 ω 2 δ ω 2 + m 1 δ ω 1 2 + m 2 δ ω 2 2 )+ 1 2 [ m 1 | v 1 +δ v 1 | | r 1 r CM | ( r 1 r CM )×( v 1 +δ v 1 )+ m 2 | v 2 +δ v 2 | | r 2 r CM | ( r 2 r CM )×( v 2 +δ v 2 ) ]= 1 2 l 2 ( m 1 ω 1 2 + m 2 ω 2 2 )+ m 1 | v 1 | | r 1 r CM | ( r 1 r CM )×( v 1 )+ m 2 | v 2 | | r 2 r CM | ( r 2 r CM )×( v 2 )= E L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaWGmbaabeaakiaacEcacqGH9aqpdaWcaaqaaiaaigda aeaacaaIYaaaaiaadYgadaahaaWcbeqaaiaaikdaaaGccaGGOaGaam yBamaaBaaaleaacaaIXaaabeaakiabeM8a3naaBaaaleaacaaIXaaa beaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcba GaaGOmaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaGcdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyBamaaBaaaleaacaaIXa aabeaakiabeM8a3naaBaaaleaacaaIXaaabeaakiabes7aKjabeM8a 3naaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacaWGTbWaaSbaaS qaaiaaikdaaeqaaOGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqiT dqMaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBamaaBa aaleaacaaIXaaabeaakiabes7aKjabeM8a3naaBaaaleaacaaIXaaa beaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcba GaaGOmaaqabaGccqaH0oazcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGc daahaaWcbeqaaiaaikdaaaGccaGGPaGaey4kaScabaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWadaqaaiaad2gadaWgaaWcbaGaaGymaaqa baGcdaWcaaqaaiaacYhacaWH2bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaeqiTdqMaaCODamaaBaaaleaacaaIXaaabeaakiaacYhaaeaa caGG8bGaaCOCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahkhada WgaaWcbaGaam4qaiaad2eaaeqaaOGaaiiFaaaacaGGOaGaaCOCamaa BaaaleaacaaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaam4qai aad2eaaeqaaOGaaiykaiabgEna0kaacIcacaWH2bWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaeqiTdqMaaCODamaaBaaaleaacaaIXaaabe aakiaacMcacqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaOWaaSaa aeaacaGG8bGaaCODamaaBaaaleaacaaIYaaabeaakiabgUcaRiabes 7aKjaahAhadaWgaaWcbaGaaGOmaaqabaGccaGG8baabaGaaiiFaiaa hkhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWHYbWaaSbaaSqaai aadoeacaWGnbaabeaakiaacYhaaaGaaiikaiaahkhadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabe aakiaacMcacqGHxdaTcaGGOaGaaCODamaaBaaaleaacaaIYaaabeaa kiabgUcaRiabes7aKjaahAhadaWgaaWcbaGaaGOmaaqabaGccaGGPa aacaGLBbGaayzxaaGaeyypa0dabaWaaSaaaeaacaaIXaaabaGaaGOm aaaacaWGSbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaad2gadaWgaa WcbaGaaGymaaqabaGccqaHjpWDdaWgaaWcbaGaaGymaaqabaGcdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaae qaaOGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaI YaaaaOGaaiykaiabgUcaRiaad2gadaWgaaWcbaGaaGymaaqabaGcda WcaaqaaiaacYhacaWH2bWaaSbaaSqaaiaaigdaaeqaaOGaaiiFaaqa aiaacYhacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCOCam aaBaaaleaacaWGdbGaamytaaqabaGccaGG8baaaiaacIcacaWHYbWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGdb GaamytaaqabaGccaGGPaGaey41aqRaaiikaiaahAhadaWgaaWcbaGa aGymaaqabaGccaGGPaGaey4kaSIaamyBamaaBaaaleaacaaIYaaabe aakmaalaaabaGaaiiFaiaahAhadaWgaaWcbaGaaGOmaaqabaGccaGG 8baabaGaaiiFaiaahkhadaWgaaWcbaGaaGOmaaqabaGccqGHsislca WHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacYhaaaGaaiikaiaa hkhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWHYbWaaSbaaSqaai aadoeacaWGnbaabeaakiaacMcacqGHxdaTcaGGOaGaaCODamaaBaaa leaacaaIYaaabeaakiaacMcacqGH9aqpcaWGfbWaaSbaaSqaaiaadY eaaeqaaaaaaa@04E0@  

(1.37)

Therefore we have the following equation from which to obtain ω2:

1 2 l 2 (2 ω 1 { f(δv) m 2 δ ω 2 }+2 m 2 ω 2 δ ω 2 + 1 m 1 { f(δv) m 2 δ ω 2 } 2 + m 2 δ ω 2 2 )+ 1 2 [ m 1 | v 1 +δ v 1 | | r 1 r CM | ( r 1 r CM )×( v 1 +δ v 1 )+ m 2 | v 2 +δ v 2 | | r 2 r CM | ( r 2 r CM )×( v 2 +δ v 2 ) ] m 1 | v 1 | | r 1 r CM | ( r 1 r CM )× v 1 + m 2 | v 2 | | r 2 r CM | ( r 2 r CM )× v 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaaIXaaabaGaaGOmaaaacaWGSbWaaWbaaSqabeaacaaIYaaaaOGa aiikaiabgkHiTiaaikdacqaHjpWDdaWgaaWcbaGaaGymaaqabaGcda GadaqaaiaadAgacaGGOaGaeqiTdqMaamODaiaacMcacqGHsislcaWG TbWaaSbaaSqaaiaaikdaaeqaaOGaeqiTdqMaeqyYdC3aaSbaaSqaai aaikdaaeqaaaGccaGL7bGaayzFaaGaey4kaSIaaGOmaiaad2gadaWg aaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccq aH0oazcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqa aiaaigdaaeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaakmaacmaaba GaamOzaiaacIcacqaH0oazcaWG2bGaaiykaiabgkHiTiaad2gadaWg aaWcbaGaaGOmaaqabaGccqaH0oazcqaHjpWDdaWgaaWcbaGaaGOmaa qabaaakiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWGTbWaaSbaaSqaaiaaikdaaeqaaOGaeqiTdqMaeqyYdC3aaSbaaS qaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaiykaiabgUca RaqaamaalaaabaGaaGymaaqaaiaaikdaaaWaamWaaeaacaWGTbWaaS baaSqaaiaaigdaaeqaaOWaaSaaaeaacaGG8bGaaCODamaaBaaaleaa caaIXaaabeaakiabgUcaRiabes7aKjaahAhadaWgaaWcbaGaaGymaa qabaGccaGG8baabaGaaiiFaiaahkhadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacYhaaa GaaiikaiaahkhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHYbWa aSbaaSqaaiaadoeacaWGnbaabeaakiaacMcacqGHxdaTcaGGOaGaaC ODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabes7aKjaahAhadaWg aaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaamyBamaaBaaaleaaca aIYaaabeaakmaalaaabaGaaiiFaiaahAhadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcqaH0oazcaWH2bWaaSbaaSqaaiaaikdaaeqaaOGaai iFaaqaaiaacYhacaWHYbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Ia aCOCamaaBaaaleaacaWGdbGaamytaaqabaGccaGG8baaaiaacIcaca WHYbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaa caWGdbGaamytaaqabaGccaGGPaGaey41aqRaaiikaiaahAhadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcqaH0oazcaWH2bWaaSbaaSqaaiaa ikdaaeqaaOGaaiykaaGaay5waiaaw2faaiabgkHiTaqaaiaad2gada WgaaWcbaGaaGymaaqabaGcdaWcaaqaaiaacYhacaWH2bWaaSbaaSqa aiaaigdaaeqaaOGaaiiFaaqaaiaacYhacaWHYbWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGdbGaamytaaqabaGc caGG8baaaiaacIcacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 IaaCOCamaaBaaaleaacaWGdbGaamytaaqabaGccaGGPaGaey41aqRa aCODamaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWgaaWcba GaaGOmaaqabaGcdaWcaaqaaiaacYhacaWH2bWaaSbaaSqaaiaaikda aeqaaOGaaiiFaaqaaiaacYhacaWHYbWaaSbaaSqaaiaaikdaaeqaaO GaeyOeI0IaaCOCamaaBaaaleaacaWGdbGaamytaaqabaGccaGG8baa aiaacIcacaWHYbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaCOCam aaBaaaleaacaWGdbGaamytaaqabaGccaGGPaGaey41aqRaaCODamaa BaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaaa@F289@  

(1.38)

This equation is of the form A δω22 +Bδω2+C where the coefficients are:

A= m 2 l 2 2 ( 1+ m 2 m 1 ) B= m 2 l 2 [ ω 2 ω 1 m 2 m 1 f(δv) ] C= 1 2 [ l 2 (2 ω 1 { f(δv) }+ 1 m 1 { f(δv) } 2 )+ m 1 | v 1 +δ v 1 | | r 1 r CM | ( r 1 r CM )×( v 1 +δ v 1 )+ m 2 | v 2 +δ v 2 | | r 2 r CM | ( r 2 r CM )×( v 2 +δ v 2 ) ] [ m 1 | v 1 | | r 1 r CM | ( r 1 r CM )× v 1 + m 2 | v 2 | | r 2 r CM | ( r 2 r CM )× v 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqai abg2da9maalaaabaGaamyBamaaBaaaleaacaaIYaaabeaakiaadYga daahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaamaabmaabaGaaGymai abgUcaRmaalaaabaGaamyBamaaDaaaleaacaaIYaaabaaaaaGcbaGa amyBamaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaaaeaaca WGcbGaeyypa0JaamyBamaaBaaaleaacaaIYaaabeaakiaadYgadaah aaWcbeqaaiaaikdaaaGcdaWadaqaaiabeM8a3naaBaaaleaacaaIYa aabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaakiabgkHi TmaalaaabaGaamyBamaaDaaaleaacaaIYaaabaaaaaGcbaGaamyBam aaBaaaleaacaaIXaaabeaaaaGccaWGMbGaaiikaiabes7aKjaadAha caGGPaaacaGLBbGaayzxaaaabaGaam4qaiabg2da9maalaaabaGaaG ymaaqaaiaaikdaaaWaamWaaeaacaWGSbWaaWbaaSqabeaacaaIYaaa aOGaaiikaiabgkHiTiaaikdacqaHjpWDdaWgaaWcbaGaaGymaaqaba GcdaGadaqaaiaadAgacaGGOaGaeqiTdqMaamODaiaacMcaaiaawUha caGL9baacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbWaaSbaaSqaai aaigdaaeqaaaaakmaacmaabaGaamOzaiaacIcacqaH0oazcaWG2bGa aiykaaGaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaakiaacMcacq GHRaWkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacaGG8bGa aCODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabes7aKjaahAhada WgaaWcbaGaaGymaaqabaGccaGG8baabaGaaiiFaiaahkhadaWgaaWc baGaaGymaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnb aabeaakiaacYhaaaGaaiikaiaahkhadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaakiaacMcacq GHxdaTcaGGOaGaaCODamaaBaaaleaacaaIXaaabeaakiabgUcaRiab es7aKjaahAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakmaalaaabaGaaiiFaiaahAhadaWg aaWcbaGaaGOmaaqabaGccqGHRaWkcqaH0oazcaWH2bWaaSbaaSqaai aaikdaaeqaaOGaaiiFaaqaaiaacYhacaWHYbWaaSbaaSqaaiaaikda aeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGdbGaamytaaqabaGcca GG8baaaiaacIcacaWHYbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Ia aCOCamaaBaaaleaacaWGdbGaamytaaqabaGccaGGPaGaey41aqRaai ikaiaahAhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH0oazcaWH 2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaGaay5waiaaw2faaiabgk HiTaqaamaadmaabaGaamyBamaaBaaaleaacaaIXaaabeaakmaalaaa baGaaiiFaiaahAhadaWgaaWcbaGaaGymaaqabaGccaGG8baabaGaai iFaiaahkhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWHYbWaaSba aSqaaiaadoeacaWGnbaabeaakiaacYhaaaGaaiikaiaahkhadaWgaa WcbaGaaGymaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWG nbaabeaakiaacMcacqGHxdaTcaWH2bWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakmaalaaabaGaaiiF aiaahAhadaWgaaWcbaGaaGOmaaqabaGccaGG8baabaGaaiiFaiaahk hadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaa doeacaWGnbaabeaakiaacYhaaaGaaiikaiaahkhadaWgaaWcbaGaaG OmaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadoeacaWGnbaabeaa kiaacMcacqGHxdaTcaWH2bWaaSbaaSqaaiaaikdaaeqaaaGccaGLBb Gaayzxaaaaaaa@F6CF@                                                                     (1.39)

The solution for δω2 is then:

δ ω 2 = B± B 2 4AC 2A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeM 8a3naaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaeyOeI0Ia amOqaiabgglaXoaakaaabaGaamOqamaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaisdacaWGbbGaam4qaaWcbeaaaOqaaiaaikdacaWGbbaa aaaa@45A1@  

(1.40)

Using this latter result will conserve both linear and angular momentum and energy.