Derivation of Maxwell Speed Distribution

Introduction

Maxwell derived the exponential atomic speed distributions without any reference to Boltzmann's "partition" functions.  To me his derivation is much easier to understand than the latter.

Setting Mono-Energetic Speeds

To "randomly" choose the components while requiring that the energy be E we could do the following:  First choose vi such that

           

            v x 0 =random( )0.5 v y 0 =random( )0.5 v z 0 =random( )0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODai aadIhadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaWGYbGaamyyaiaa d6gacaWGKbGaam4Baiaad2gadaqadaqaaaGaayjkaiaawMcaaiabgk HiTiaaicdacaGGUaGaaGynaaqaaiaadAhacaWG5bWaaSbaaSqaaiaa icdaaeqaaOGaeyypa0JaamOCaiaadggacaWGUbGaamizaiaad+gaca WGTbWaaeWaaeaaaiaawIcacaGLPaaacqGHsislcaaIWaGaaiOlaiaa iwdaaeaacaWG2bGaamOEamaaBaaaleaacaaIWaaabeaakiabg2da9i aadkhacaWGHbGaamOBaiaadsgacaWGVbGaamyBamaabmaabaaacaGL OaGaayzkaaGaeyOeI0IaaGimaiaac6cacaaI1aaaaaa@6080@              (1.1)

where random() results in a floating point random number between 0 and 1.  Then compute

            r= v x 0 2 +v y 0 2 +v z 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpdaGcaaqaaiaadAhacaWG4bWaaSbaaSqaaiaaicdaaeqaaOWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaamODaiaadMhadaqhaaWcbaGaaG imaaqaaiaaikdaaaGccqGHRaWkcaWG2bGaamOEamaaDaaaleaacaaI WaaabaGaaGOmaaaaaeqaaaaa@44DA@    (1.2)

then actual velocity components are:

            v x = v max v y 0 r v y = v max v y 0 r v z = v max v y 0 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODam aaBaaaleaacaWG4baabeaakiabg2da9maalaaabaGaamODamaaBaaa leaaciGGTbGaaiyyaiaacIhaaeqaaOGaamODaiaadMhadaWgaaWcba GaaGimaaqabaaakeaacaWGYbaaaaqaaiaadAhadaWgaaWcbaGaamyE aaqabaGccqGH9aqpdaWcaaqaaiaadAhadaWgaaWcbaGaciyBaiaacg gacaGG4baabeaakiaadAhacaWG5bWaaSbaaSqaaiaaicdaaeqaaaGc baGaamOCaaaaaeaacaWG2bWaaSbaaSqaaiaadQhaaeqaaOGaeyypa0 ZaaSaaaeaacaWG2bWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGc caWG2bGaamyEamaaBaaaleaacaaIWaaabeaaaOqaaiaadkhaaaaaaa a@5771@      (1.3)

where

            v max = 2E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maakaaabaWaaSaa aeaacaaIYaGaamyraaqaaiaad2gaaaaaleqaaaaa@3D99@      (1.4)

and E is the energy of all of the atoms.

           

Maxwell's Derivation without Energy Constraints

Maxwell claims that the (vx,vy,vz) components are independent of each other so he can write the three dimensional probability function as the product of three one-dimensional probability functions:

            F( v x , v y , v z )=f( v x )f( v y )f( v z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamODamaaBaaaleaacaWG4baabeaakiaacYcacaWG2bWaaSbaaSqa aiaadMhaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaamOEaaqabaGcca GGPaGaeyypa0JaamOzaiaacIcacaWG2bWaaSbaaSqaaiaadIhaaeqa aOGaaiykaiaadAgacaGGOaGaamODamaaBaaaleaacaWG5baabeaaki aacMcacaWGMbGaaiikaiaadAhadaWgaaWcbaGaamOEaaqabaGccaGG Paaaaa@4E5B@           (1.6)

 Now, since F or the fs are not expected to be zero or negative, it is acceptable to take the natural log of both sides of this equation:

            ln(F)=ln[f( v x )]+ln[f( v y )]+ln[f( v z )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb GaaiikaiaadAeacaGGPaGaeyypa0JaciiBaiaac6gacaGGBbGaamOz aiaacIcacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiaac2facq GHRaWkciGGSbGaaiOBaiaacUfacaWGMbGaaiikaiaadAhadaWgaaWc baGaamyEaaqabaGccaGGPaGaaiyxaiabgUcaRiGacYgacaGGUbGaai 4waiaadAgacaGGOaGaamODamaaBaaaleaacaWG6baabeaakiaacMca caGGDbaaaa@5502@          (1.7)

Now we can take the derivative of this equation with respect to vx:

            ln(F) v x = dln[f( v x )] d v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaGGOaGaamOraiaacMcaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaadIhaaeqaaaaakiabg2da9maalaaabaGaamizai GacYgacaGGUbGaai4waiaadAgacaGGOaGaamODamaaBaaaleaacaWG 4baabeaakiaacMcacaGGDbaabaGaamizaiaadAhadaWgaaWcbaGaam iEaaqabaaaaaaa@4C1F@   (1.8)

Note that the total speed is:

            v= v x 2 + v y 2 + v z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacqGH9a qpdaGcaaqaaiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccqGH RaWkcaWG2bWaa0baaSqaaiaadMhaaeaacaaIYaaaaOGaey4kaSIaam ODamaaDaaaleaacaWG6baabaGaaGOmaaaaaeqaaaaa@427A@           (1.9)

and therefore we can use the chain rule to express the derivative:

            ln(F) v x = ln[F] v v v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaGGOaGaamOraiaacMcaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaadIhaaeqaaaaakiabg2da9maalaaabaGaeyOaIy RaciiBaiaac6gacaGGBbGaamOraiaac2faaeaacqGHciITcaWG2baa amaalaaabaGaeyOaIyRaamODaaqaaiabgkGi2kaadAhadaWgaaWcba GaamiEaaqabaaaaaaa@4E44@   (1.10)

Now

            v v x = v x v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamODaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamiEaaqabaaa aOGaeyypa0ZaaSaaaeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaaGcba GaamODaaaaaaa@402F@            (1.11)

so that:

            ln(F) v x = ln[F] v v x v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaGGOaGaamOraiaacMcaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaadIhaaeqaaaaakiabg2da9maalaaabaGaeyOaIy RaciiBaiaac6gacaGGBbGaamOraiaac2faaeaacqGHciITcaWG2baa amaalaaabaGaamODamaaBaaaleaacaWG4baabeaaaOqaaiaadAhaaa aaaa@4B82@     (1.12)

Then using a previous equation we can write:

 

            ln(F) v x = ln[F] v v x v = dln[f( v x )] d v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaGGOaGaamOraiaacMcaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaadIhaaeqaaaaakiabg2da9maalaaabaGaeyOaIy RaciiBaiaac6gacaGGBbGaamOraiaac2faaeaacqGHciITcaWG2baa amaalaaabaGaamODamaaBaaaleaacaWG4baabeaaaOqaaiaadAhaaa Gaeyypa0ZaaSaaaeaacaWGKbGaciiBaiaac6gacaGGBbGaamOzaiaa cIcacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiaac2faaeaaca WGKbGaamODamaaBaaaleaacaWG4baabeaaaaaaaa@58A4@       (1.13)

which can be written:

            ln[F] v 1 v = 1 v x dln[f( v x )] d v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaGGBbGaamOraiaac2faaeaacqGHciITcaWG 2baaamaalaaabaGaaGymaaqaaiaadAhaaaGaeyypa0ZaaSaaaeaaca aIXaaabaGaamODamaaBaaaleaacaWG4baabeaaaaGcdaWcaaqaaiaa dsgaciGGSbGaaiOBaiaacUfacaWGMbGaaiikaiaadAhadaWgaaWcba GaamiEaaqabaGccaGGPaGaaiyxaaqaaiaadsgacaWG2bWaaSbaaSqa aiaadIhaaeqaaaaaaaa@5012@        (1.14)

The next ansatz is that all of the (vx,vy,vz) versions of the right hand side of this equation must be equal to the same constant.  We will call this constant -b and let the initial value of f(vx)=a.  Then we can write:

            1 v x dln[f( v x )] d v x =b dln[f( v x )]=ln[f( v x )]ln(a)=b v x d v x = b v x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaaIXaaabaGaamODamaaBaaaleaacaWG4baabeaaaaGcdaWcaaqa aiaadsgaciGGSbGaaiOBaiaacUfacaWGMbGaaiikaiaadAhadaWgaa WcbaGaamiEaaqabaGccaGGPaGaaiyxaaqaaiaadsgacaWG2bWaaSba aSqaaiaadIhaaeqaaaaakiabg2da9iabgkHiTiaadkgaaeaadaWdba qaaiaadsgaciGGSbGaaiOBaiaacUfacaWGMbGaaiikaiaadAhadaWg aaWcbaGaamiEaaqabaGccaGGPaGaaiyxaiabg2da9iGacYgacaGGUb Gaai4waiaadAgacaGGOaGaamODamaaBaaaleaacaWG4baabeaakiaa cMcacaGGDbGaeyOeI0IaciiBaiaac6gacaGGOaGaamyyaiaacMcacq GH9aqpcqGHsislcaWGIbWaa8qaaeaacaWG2bWaaSbaaSqaaiaadIha aeqaaOGaamizaiaadAhadaWgaaWcbaGaamiEaaqabaGccqGH9aqpcq GHsisldaWcaaqaaiaadkgacaWG2bWaa0baaSqaaiaadIhaaeaacaaI YaaaaaGcbaGaaGOmaaaaaSqabeqaniabgUIiYdaaleqabeqdcqGHRi I8aaaaaa@71BC@   (1.15)

or integrating and taking the exponential of both sides:

            f( v x )=aexp( b v x 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODamaaBaaaleaacaWG4baabeaakiaacMcacqGH9aqpcaWGHbGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiabgkHiTiaadkgaca WG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaaGcbaGaaGOmaaaaaiaa wIcacaGLPaaaaaa@4638@   (1.16)

To evaluate a we must compute the integral of f(vx) from negative infinity to + infinity:

            a exp( b v x 2 2 )d v x =a 2π b =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWdXa qaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWG IbGaamODamaaDaaaleaacaWG4baabaGaaGOmaaaaaOqaaiaaikdaaa aacaGLOaGaayzkaaGaamizaiaadAhadaWgaaWcbaGaamiEaaqabaGc cqGH9aqpcaWGHbWaaOaaaeaadaWcaaqaaiaaikdacqaHapaCaeaaca WGIbaaaaWcbeaakiabg2da9iaaigdaaSqaaiabgkHiTiabg6HiLcqa aiabg6HiLcqdcqGHRiI8aaaa@5111@         (1.17)

so that

            a= b 2π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaGcaaqaamaalaaabaGaamOyaaqaaiaaikdacqaHapaCaaaaleqa aaaa@3B62@           (1.18)

To determine b we have to integrate the energy associated with the vx component and (and for 3D) set it equal to 1/3 of the total kinetic energy

           

            m 2 b 2π v x 2 exp( b v x 2 2 )d v x = 1 3 E kinetic MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaaqaaiaaikdaaaWaaOaaaeaadaWcaaqaaiaadkgaaeaacaaIYaGa eqiWdahaaaWcbeaakmaapedabaGaamODamaaDaaaleaacaWG4baaba GaaGOmaaaaaeaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipa kiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGIb GaamODamaaDaaaleaacaWG4baabaGaaGOmaaaaaOqaaiaaikdaaaaa caGLOaGaayzkaaGaamizaiaadAhadaWgaaWcbaGaamiEaaqabaGccq GH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiaadweadaWgaaWcbaGa am4AaiaadMgacaWGUbGaamyzaiaadshacaWGPbGaam4yaaqabaaaaa@5B2A@           (1.19)

Evaluating the integral in equation 1.3 we obtain:

 

            m 2 b 2π ( 1 2 8π b 3 )= 1 3 m v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaaqaaiaaikdaaaWaaOaaaeaadaWcaaqaaiaadkgaaeaacaaIYaGa eqiWdahaaaWcbeaakmaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaa aadaGcaaqaamaalaaabaGaaGioaiabec8aWbqaaiaadkgadaahaaWc beqaaiaaiodaaaaaaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiaaigdaaeaacaaIZaaaamaalaaabaGaamyBaiaadAhadaahaaWc beqaaiaaikdaaaaakeaacaaIYaaaaaaa@4902@       (1.20)

Solving for b in equation 1.5 we have:

            1 b = 1 3 v 2 2 b= 3 v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaaIXaaabaGaamOyaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI ZaaaamaalaaabaGaamODamaaCaaaleqabaGaaGOmaaaaaOqaaiaaik daaaaabaGaamOyaiabg2da9maalaaabaGaaG4maaqaamaalaaabaGa amODamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaaaaaaaaa@4260@            (1.21)

Therefore the equation for f(vx) is actually:

            f( v x )= 3 π v 2 exp( 3 v x 2 v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODamaaBaaaleaacaWG4baabeaakiaacMcacqGH9aqpdaGcaaqa amaalaaabaGaaG4maaqaaiabec8aWjaadAhadaahaaWcbeqaaiaaik daaaaaaaqabaGcciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGa eyOeI0IaaG4maiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaaake aacaWG2bWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa @4AE2@       (1.22)

In 3D the standard definition of the temperature associated with a particle with total translational kinetic energy mv2/2 is

            m v 2 2 = 3 2 kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabg2da 9maalaaabaGaaG4maaqaaiaaikdaaaGaam4Aaiaadsfaaaa@3DEF@      (1.23)

and therefore converting the v2 to temperature we have:

            f( v x )= m πkT exp( m v x 2 kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODamaaBaaaleaacaWG4baabeaakiaacMcacqGH9aqpdaGcaaqa amaalaaabaGaamyBaaqaaiabec8aWjaadUgacaWGubaaaaWcbeaaki GacwgacaGG4bGaaiiCamaabmaabaWaaSaaaeaacqGHsislcaWGTbGa amODamaaDaaaleaacaWG4baabaGaaGOmaaaaaOqaaiaadUgacaWGub aaaaGaayjkaiaawMcaaaaa@4B17@     (1.24)