Harmonic Oscillator Motion

Introduction

The simple harmonic oscillator’s (SHO) motion is a good approximation of the motion of practically all real-world objects that present periodic motion.  Even though the SHO’s restoring force is linear in displacement, its motion is a good approximation for a motion of a system with non-linear restoring force, at least within a limited range of the latter’s displacement.  Even the motion of higher energy state electrons in atoms simulates that of a harmonic oscillator. Therefore a good grasp on the dynamics of the SHO goes a long way toward understanding the dynamics of the real world.

Calculations:

 

The picture on the left shows the important parameters of the SHO. They include a spring (shown here as a coil with spring constant k Newtons per meter), a drag element (shown here as a shock absorber

Drag element

Constant=b

 

Spring

Constant=k

 
Text Box:  , often called a dashpot, with a constant b Newtons-seconds per meter) and a Mass, M, at the bottom.  The function of the spring is to restore the mass to an equilibrium height and the function of the drag element is to realistically simulate the decay of any oscillation that is in progress.

 

The equation that describes the motion of the mass is:

M d 2 y d t 2 +b dy dt +ky=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamOyamaalaaaba GaamizaiaadMhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWGRbGaamyE aiabg2da9iaaicdaaaa@46AE@

(1)

To solve equation 1 we make the substitution:

y=Real[ Yexp( i ω c t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpciGGsbGaaiyzaiaadggacaWGSbWaamWaaeaacaWGzbGaciyzaiaa cIhacaGGWbWaaeWaaeaacaWGPbGaeqyYdC3aaSbaaSqaaiaadogaae qaaOGaamiDaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@478D@

(2)

where i is the square root of -1, Real[] denotes the real part of the resulting value, Y is the peak displacement under any preset conditions, t is time, and ωc (which has units of 1/time and is complex) is a parameter for which we will solve.

Using equation 2 in equation 1 we have very easily:

( ω c 2 M+i ω c b+k)Y=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqGHsi slcqaHjpWDdaqhaaWcbaGaam4yaaqaaiaaikdaaaGccaWGnbGaey4k aSIaamyAaiabeM8a3naaBaaaleaacaWGJbaabeaakiaadkgacqGHRa WkcaWGRbGaaiykaiaadMfacqGH9aqpcaaIWaaaaa@46BD@

(3)

The result for ωc is:

ω c = k M b 2 4 M 2 +i b 2M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGJbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa baGaamytaaaacqGHsisldaWcaaqaaiaadkgadaahaaWcbeqaaiaaik daaaaakeaacaaI0aGaamytamaaCaaaleqabaGaaGOmaaaaaaaabeaa kiabgUcaRiaadMgadaWcaaqaaiaadkgaaeaacaaIYaGaamytaaaaaa a@456D@

(4)

We see from equation 4, that if b=0 i.e. no drag, then

ω= k M ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9maakaaabaWaaSaaaeaacaWGRbaabaGaamytaaaaaSqabaGccqGH HjIUcqaHjpWDdaWgaaWcbaGaaGimaaqabaaaaa@3F31@

(5)

where we have defined ω0.  Also, to simplify notation, we now separate the real and imaginary parts of equation 4 by re-naming these quantities:

α= b 2M ω= ω 0 2 α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqySde Maeyypa0ZaaSaaaeaacaWGIbaabaGaaGOmaiaad2eaaaaabaGaeqyY dCNaeyypa0ZaaOaaaeaacqaHjpWDdaqhaaWcbaGaaGimaaqaaiaaik daaaGccqGHsislcqaHXoqydaahaaWcbeqaaiaaikdaaaaabeaaaaaa @44EE@

(6)

Using equations 6 in equation 2 we have

y=YReal{ exp[i(ω+iα)t] }=Ycos(ωt)exp(αt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpcaWGzbGaciOuaiaacwgacaWGHbGaamiBamaacmaabaGaciyzaiaa cIhacaGGWbGaai4waiaadMgacaGGOaGaeqyYdCNaey4kaSIaamyAai abeg7aHjaacMcacaWG0bGaaiyxaaGaay5Eaiaaw2haaiabg2da9iaa dMfaciGGJbGaai4BaiaacohacaGGOaGaeqyYdCNaamiDaiaacMcaci GGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaeqySdeMaamiDaiaacMca aaa@5C3C@

(7)

Summary

The meaning of equation 7 is that, if we initially displace the mass from its equilibrium position by distance Y and have initial speed zero, then the subsequent motion will follow the product of the cosine periodic motion times the exponential decay coefficient.