Gravity Assist Animation

Introduction

Propellant for probes to other planets in our solar system can be greatly reduced by use of close flybys of planets.  The main reason for this is that the planet has a lot of orbital speed so that, when the spacecraft is under its gravitational force influence, the planet tends to make a component of the  spacecraft's velocity equal to its own orbital speed.  This effect is explored by this animation.

y

 
Figures

Figure 1:Diagram of the initial positions of the spacecraft and the planet.  In order to provide energy to the spacecraft, the planet has more speed than the spacecraft.

 

Figure 2: Diagram of the animation showing closest approach of spacecraft to planet under influence of gravity attraction.

Math for Computing Starting Conditions for Close Intercept

We will assume the planet starts at y=0 and is moving downward at speed vyp along the y axis.  The spacecraft, at the start, is poised farther down at -y0 and in the x direction at -x0 from the y axis where both x0 and y0 are positive numbers.  The initial velocity of the spacecraft will be (vx0,vy0).  We need to be able to compute the appropriate distance x0 from the y axis for the start position of the spacecraft.  Without any change in speed, the time required for the spacecraft to cross the y axis is

t= y 0 v py v y0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpdaWcaaqaaiaadMhadaWgaaWcbaGaaGimaaqabaaakeaacaWG2bWa aSbaaSqaaiaadchacaWG5baabeaakiabgkHiTiaadAhadaWgaaWcba GaamyEaiaaicdaaeqaaaaaaaa@40D8@  

(1.1)

For the spacecraft to intercept the planet which is on the y axis we must then set a nominal value for x0 to be

x 0 = t int v x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWG0bWaaSbaaSqaaiGacMgacaGG UbGaaiiDaaqabaGccaWG2bWaaSbaaSqaaiaadIhacaaIWaaabeaaaa a@3FC4@  

(1.2)

The above values of the starting position for the spacecraft would cause the intercept to occur at the center of planet. 

 

We want to have the intercept occur with an offset, so, from the rim of the planet.  If the radius of the planet is a, then the distance from the planet center is dint=a+so.  A unit vector along the normal to the relative velocity vector can be written in terms of the differential velocities:

d v x = v x0 d v y = v py v y0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadAhadaWgaaWcbaGaamiEaaqabaGccqGH9aqpcaWG2bWaaSbaaSqa aiaadIhacaaIWaaabeaaaOqaaiaadsgacaWG2bWaaSbaaSqaaiaadM haaeqaaOGaeyypa0JaamODamaaBaaaleaacaWGWbGaamyEaaqabaGc cqGHsislcaWG2bWaaSbaaSqaaiaadMhacaaIWaaabeaaaaaa@4805@  

(1.3)

Then the normal ndv to the relative velocity vector can be written:

d v abs = d v x d v x +d v y d v y n dv = d v y d v abs x+ d v x d v abs y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadAhadaWgaaWcbaGaamyyaiaadkgacaWGZbaabeaakiabg2da9maa kaaabaGaamizaiaadAhadaWgaaWcbaGaamiEaaqabaGccaWGKbGaam ODamaaBaaaleaacaWG4baabeaakiabgUcaRiaadsgacaWG2bWaaSba aSqaaiaadMhaaeqaaOGaamizaiaadAhadaWgaaWcbaGaamyEaaqaba aabeaaaOqaaiaah6gadaWgaaWcbaGaamizaiaadAhaaeqaaOGaeyyp a0ZaaSaaaeaacqGHsislcaWGKbGaamODamaaBaaaleaacaWG5baabe aaaOqaaiaadsgacaWG2bWaaSbaaSqaaiaadggacaWGIbGaam4Caaqa baaaaOGaaCiEaiabgUcaRmaalaaabaGaamizaiaadAhadaWgaaWcba GaamiEaaqabaaakeaacaWGKbGaamODamaaBaaaleaacaWGHbGaamOy aiaadohaaeqaaaaakiaahMhaaaaa@611D@  

(1.4)

To correct both x0 and y0 for the offset and the radius of the planet we need to use this normal vector:

x 0 ' = x 0 + d int n dv x y 0 ' = y 0 + d int n dv y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaDaaaleaacaaIWaaabaGaai4jaaaakiabg2da9iaadIhadaWgaaWc baGaaGimaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiGacMgacaGGUb GaaiiDaaqabaGccaWGUbWaaSbaaSqaaiaadsgacaWG2baabeaakmaa BaaaleaacaWG4baabeaaaOqaaiaadMhadaqhaaWcbaGaaGimaaqaai aacEcaaaGccqGH9aqpcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaey4k aSIaamizamaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaOGaamOBam aaBaaaleaacaWGKbGaamODaaqabaGcdaWgaaWcbaGaamyEaaqabaaa aaa@5337@  

(1.5)

Effect of Gravity on Closest Approach

Obviously the slower the relative starting speed, the more the effect of gravity on the final intercept distance.  And the approach speed is constantly changing due to gravity. At any center to center distance r, the acceleration, , due to gravity is

a= GM r 3 (dxx+dyy)= GM | r p - r s | 3 ( r p - r s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggacqGH9a qpdaWcaaqaaiaadEeacaWGnbaabaGaamOCamaaCaaaleqabaGaaG4m aaaaaaGccaGGOaGaamizaiaadIhacaWH4bGaey4kaSIaamizaiaadM hacaWH5bGaaiykaiabg2da9maalaaabaGaam4raiaad2eaaeaacaGG 8bGaaCOCamaaBaaaleaacaWHWbaabeaakiaah2cacaWHYbWaaSbaaS qaaiaahohaaeqaaOGaaiiFamaaCaaaleqabaGaaG4maaaaaaGccaGG OaGaaCOCamaaBaaaleaacaWHWbaabeaakiaah2cacaWHYbWaaSbaaS qaaiaahohaaeqaaOGaaiykaaaa@549A@  

(1.6)

where

dx= x p x s dy= y p y s r= d x 2 +d y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadIhacqGH9aqpcaWG4bWaaSbaaSqaaiaadchaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaWGZbaabeaaaOqaaiaadsgacaWG5bGaeyypa0 JaamyEamaaBaaaleaacaWGWbaabeaakiabgkHiTiaadMhadaWgaaWc baGaam4CaaqabaaakeaacaWGYbGaeyypa0ZaaOaaaeaacaWGKbGaam iEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadsgacaWG5bWaaWba aSqabeaacaaIYaaaaaqabaaaaaa@4EE6@  

(1.7)

Obviously the speed at any position ( x s , y s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWG4b WaaSbaaSqaaiaadohaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaam4C aaqabaGccaGGPaaaaa@3C4C@  will be affected by the acceleration:

d v s dt =a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaahAhadaWgaaWcbaGaam4CaaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpcaWHHbaaaa@3CE3@  

(1.8)

and further the position will be influenced by this speed change:

r s (t)= r s (0)+ v 0 t+GM t' t dt' 0 t' r p r s | r p r s | 3 dt'' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaaC4CaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaWHYbWa aSbaaSqaaiaahohaaeqaaOGaaiikaiaaicdacaGGPaGaey4kaSIaaC ODamaaBaaaleaacaWHWaaabeaakiaadshacqGHRaWkcaWGhbGaamyt amaapehabaGaamizaiaadshacaGGNaaaleaacaWG0bGaai4jaaqaai aadshaa0Gaey4kIipakmaapehabaWaaSaaaeaacaWHYbWaaSbaaSqa aiaahchaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWHZbaabeaaaO qaaiaacYhacaWHYbWaaSbaaSqaaiaahchaaeqaaOGaeyOeI0IaaCOC amaaBaaaleaacaWHZbaabeaakiaacYhadaahaaWcbeqaaiaaiodaaa aaaOGaamizaiaadshacaGGNaGaai4jaaWcbaGaaGimaaqaaiaadsha caGGNaaaniabgUIiYdaaaa@6321@  

(1.9)

A more acceptable form of this equation has rp -rs as the variable:

r p r s = r p (0) r s (0)+( v p - v s (0))t+GM t' t dt' 0 t' r p r s | r p r s | 3 dt'' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaaCiCaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaahohaaeqa aOGaeyypa0JaaCOCamaaBaaaleaacaWGWbaabeaakiaacIcacaaIWa GaaiykaiabgkHiTiaahkhadaWgaaWcbaGaaC4CaaqabaGccaGGOaGa aGimaiaacMcacqGHRaWkcaGGOaGaaCODamaaBaaaleaacaWHWbaabe aakiaah2cacaWH2bWaaSbaaSqaaiaahohaaeqaaOGaaiikaiaaicda caGGPaGaaiykaiaadshacqGHRaWkcaWGhbGaamytamaapehabaGaam izaiaadshacaGGNaaaleaacaWG0bGaai4jaaqaaiaadshaa0Gaey4k IipakmaapehabaWaaSaaaeaacaWHYbWaaSbaaSqaaiaahchaaeqaaO GaeyOeI0IaaCOCamaaBaaaleaacaWHZbaabeaaaOqaaiaacYhacaWH YbWaaSbaaSqaaiaahchaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaaca WHZbaabeaakiaacYhadaahaaWcbeqaaiaaiodaaaaaaOGaamizaiaa dshacaGGNaGaai4jaaWcbaGaaGimaaqaaiaadshacaGGNaaaniabgU IiYdaaaa@6F9F@  

(1.10)

It is probably best to solve this equation for rs(t) numerically and provide the results to the learner.

 

Energy Required for Course Correction After Gravity Assist

The spacecraft direction, arctangent(vy/vx), is changed by gravity assist and it is important to consider how much energy is required to correct the course.  We can always make this correction long after the gravity assist by applying force in the direction normal to the present course.   The unit normal vector, nv, to the spacecraft direction is given by:

n v = v y x+ v x y v x 2 + v y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah6gadaWgaa WcbaGaamODaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaadAhadaWg aaWcbaGaamyEaaqabaGccaWH4bGaey4kaSIaamODamaaBaaaleaaca WG4baabeaakiaahMhaaeaadaGcaaqaaiaadAhadaqhaaWcbaGaamiE aaqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaadMhaaeaaca aIYaaaaaqabaaaaaaa@4817@  

(1.11)

We want to apply acceleration along this normal vector until

v y v x = v y0 v x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ODamaaBaaaleaacaWG5baabeaaaOqaaiaadAhadaWgaaWcbaGaamiE aaqabaaaaOGaeyypa0ZaaSaaaeaacaWG2bWaaSbaaSqaaiaadMhaca aIWaaabeaaaOqaaiaadAhadaWgaaWcbaGaamiEaiaaicdaaeqaaaaa aaa@4135@  

(1.12)

The power needed to cause this acceleration is

P=Fv=ma n v v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpcaWHgbGaeyOiGCRaaCODaiabg2da9iaad2gacaWGHbGaaCOBamaa BaaaleaacaWH2baabeaakiaahkcicaWH2baaaa@41ED@  

(1.13)

where F is the force, m is the mass of the spacecraft and a is the magnitude of the acceleration.  Using equation (1.11) in equation 113 we have

P=ma( v y x+ v x y v x 2 + v y 2 )( v x x+ v y y)=ma ( v x v y + v x v y ) v x 2 + v y 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpcaWGTbGaamyyamaabmaabaWaaSaaaeaacqGHsislcaWG2bWaaSba aSqaaiaadMhaaeqaaOGaaCiEaiabgUcaRiaadAhadaWgaaWcbaGaam iEaaqabaGccaWH5baabaWaaOaaaeaacaWG2bWaa0baaSqaaiaadIha aeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaWG5baabaGaaG OmaaaaaeqaaaaaaOGaayjkaiaawMcaaiabgkci3kaacIcacaWG2bWa aSbaaSqaaiaadIhaaeqaaOGaamiEaiabgUcaRiaadAhadaWgaaWcba GaamyEaaqabaGccaWG5bGaaiykaiabg2da9iaad2gacaWGHbWaaSaa aeaacaGGOaGaeyOeI0IaamODamaaBaaaleaacaWG4baabeaakiaadA hadaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaa dIhaaeqaaOGaamODamaaBaaaleaacaWG5baabeaakiaacMcaaeaada GcaaqaaiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccqGHRaWk caWG2bWaa0baaSqaaiaadMhaaeaacaaIYaaaaaqabaaaaOGaeyypa0 JaaGimaaaa@6BA0@  

(1.14)

So the power needed is identically zero as long at the acceleration is normal to the current velocity.  That also means that the energy needed is identically zero.  The reason for this strange result is that, if a particle's velocity is zero, then it requires only infinitesimal energy input to change the velocity by a small amount i.e. Ein=mvdv=0 when v is zero.  A physical analogy for this behavior is that of a charged particle that has a magnetic field applied normal to the plane of the particle's trajectory.  If the field is applied for a very short time, the path of the particle will be an arc of constant radius.  As is well known, the particle will not change its kinetic energy due to the magnetic field. The above result assumes that the spacecraft has left the influence of the gravity on the planet.