Evolution of Energy Equipartition and the Boltzmann Distribution Law.

Introduction

            This animation shows un-ambiguously that the evolution of the Boltzmann-like energy equipartition and final exponential energy distribution stems from the dynamics of collisions.

            In this document, I first give the standard macroscopic Boltzmann treatment of the energy distribution of atoms of different mass.  Then I describe just what and how the program computes its several different types of plots.  Finally I show the mathematics of the velocity changes when two atoms of different mass and arbitrary velocities collide.  Then I compute the average atom energies after collisions from those before collisions.

 

Standard Thermal Physics Treatment

            The Boltzmann probability law for atom kinetic energy, E, is often written as:

                                               

N(E)= N 0 exp( E kT )= N 0 exp( m v 2 2kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGOa GaamyraiaacMcacqGH9aqpcaWGobWaaSbaaSqaaiaaicdaaeqaaOGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiabgkHiTiaadweaae aacaWGRbGaamivaaaaaiaawIcacaGLPaaacqGH9aqpcaWGobWaaSba aSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaa qaaiabgkHiTiaad2gacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaiaadUgacaWGubaaaaGaayjkaiaawMcaaaaa@512D@  

(1.1)

where N0 is a normalization constant, m is the mass of the atom, k is Boltzmann's constant, v is the speed of the atom, and T is absolute temperature.  It turns out, for the case of hard spheres and for real atoms, such as the noble gases that behave like hard spheres, that the E dependence of equation 1 is incorrect  for both 1 and 3 dimensions[1] (see equation 26 with a=1/2 for 1 dimension and a=3/2 for 3 dimensions).  For the  important physical case of 3 dimensions the animations show that the appropriate equation for energy distribution is

N(E)= N 1 E exp( E kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGOa GaamyraiaacMcacqGH9aqpcaWGobWaaSbaaSqaaiaaigdaaeqaaOWa aOaaaeaacaWGfbaaleqaaOGaciyzaiaacIhacaGGWbWaaeWaaeaada WcaaqaaiabgkHiTiaadweaaeaacaWGRbGaamivaaaaaiaawIcacaGL Paaaaaa@448E@  

(1.2)

as given in the above reference.

A more general expression for the range of dimensions d=1->3 is

N(E)= N 1 E d 2 1 exp( E kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGOa GaamyraiaacMcacqGH9aqpcaWGobWaaSbaaSqaaiaaigdaaeqaaOGa amyramaaCaaaleqabaWaaSaaaeaacaWGKbaabaGaaGOmaaaacqGHsi slcaaIXaaaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWc aaqaaiaadweaaeaacaWGRbGaamivaaaaaiaawIcacaGLPaaaaaa@47FD@  

(1.3)

For a derivation of this expression see a topic "Speed and Energy Distributions" in animation chapter "Gas Physics".

 

What the Animation Program Computes.

1. Energy Distribution N(E)

            The program uses the results for velocity changes that are given in the next section to compute the kinetic energies of all of the atoms at each time increment.  These energies are used to compute a bin number, b

b= E E max n bins MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpdaWcaaqaaiaadweaaeaacaWGfbWaaSbaaSqaaiGac2gacaGGHbGa aiiEaaqabaaaaOGaamOBamaaBaaaleaacaWGIbGaamyAaiaad6gaca WGZbaabeaaaaa@4165@  

(1.4)

where Emax is several times larger than the average energy of all the atoms and nbins is the number of energy bins that we use.

When an atom has bin number b, an integer array component, iEb, is incremented by an the integer 1.  After all of the atoms have been polled, iE contains the distribution of number of atoms Vs atom energy, N(E).  But, since we use about 80 bins and we are limited to only about 1200 atoms, that would result, if N(E) is constant, in an average bin population of 15.  The variance of 15 is about 4 and this would result in very erratic N(E).  What we really want to know is the relative average occupancy of the energy bins. To obtain the final relative occupancy of the bins, it is acceptable to keep incrementing iEb after each time interval.  If we do this for a very large number of time increments, the initial transient changes of N(E) will be "averaged out".  It is equivalent to taking many "snapshots" of the atomic energy distribution and averaging the results for each bin.  Then what is plotted as a histogram is

           

i E b = 1 T t=1 T i E b,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacaWGfb WaaSbaaSqaaiaadkgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa amivaaaadaaeWbqaaiaadMgacaWGfbWaaSbaaSqaaiaadkgacaGGSa GaamiDaaqabaaabaGaamiDaiabg2da9iaaigdaaeaacaWGubaaniab ggHiLdaaaa@45A8@  

(1.5)

where t is the snapshot number and T is much greater than one. 

            The animation makes separate histograms for red and blue atoms.  In addition, a least squares fit of an exponential function (the Boltzmann distribution) to the data in the histogram is made.  The relative occupancy number (RON) equation is:

N a (E)= N 0 exp( E <E> ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamyyaaqabaGccaGGOaGaamyraiaacMcacqGH9aqpcaWGobWa aSbaaSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacq GHsisldaWcaaqaaiaadweaaeaacqGH8aapcaWGfbGaeyOpa4daaaGa ayjkaiaawMcaaaaa@45C7@  

(1.6)

where <E> is the average energy of the entire atom ensemble just as expected for a Boltzmann distribution.  The animation shows beyond doubt that the RON equation has the same form and constants for red and blue atoms regardless of their masses, numbers and initial energies.

Figure 1: Diagram for d=2 dimensions of the animation after evolution was reasonably complete with an average energy <E>=3.0.  Note that the green and purple exponential plots are a good fit to the red and blue atom numbers per bin histogram with correlation coefficients of 1.0.  Also note that the exponential coefficients were very close to -1/3.0 as expected for a Boltzmann distribution.

2. The Average Energy Bin Occupancy Time τ(E)

            The bin occupancy at low energy is expected to be longer than that at high energy and that asymmetry feeds into the exponential distribution of N(E).  To compute the bin occupancy time, for each atom pair, c and d, that achieve the scatter condition, we record the time at which this occurs, t0c and t0d.  Then, at the next time, t1, that the scatter condition occurs, we take these differences t1c-t0c and t1d-t0d and increment a bin-based array by these numbers for each atom of the scattering pair.  Since we want to have the average time between scatterings, we also increment a similar bin-based integer array by 1 for each of the pair. To get the average we use the fraction

τ c,b = 1 T c t=1 T c ( t t+1,c,b t t,c,b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGJbGaaiilaiaadkgaaeqaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamivamaaBaaaleaacaWGJbaabeaaaaGcdaaeWbqaaiaacI cacaWG0bWaaSbaaSqaaiaadshacqGHRaWkcaaIXaGaaiilaiaadoga caGGSaGaamOyaaqabaGccqGHsislaSqaaiaadshacqGH9aqpcaaIXa aabaGaamivamaaBaaameaacaWGJbaabeaaa0GaeyyeIuoakiaadsha daWgaaWcbaGaamiDaiaacYcacaWGJbGaaiilaiaadkgaaeqaaOGaai ykaaaa@53B2@  

(1.7)

τ d,b = 1 T d t=1 T d ( t t+1,d,b t t,d,b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGKbGaaiilaiaadkgaaeqaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamivamaaBaaaleaacaWGKbaabeaaaaGcdaaeWbqaaiaacI cacaWG0bWaaSbaaSqaaiaadshacqGHRaWkcaaIXaGaaiilaiaadsga caGGSaGaamOyaaqabaGccqGHsislaSqaaiaadshacqGH9aqpcaaIXa aabaGaamivamaaBaaameaacaWGKbaabeaaa0GaeyyeIuoakiaadsha daWgaaWcbaGaamiDaiaacYcacaWGKbGaaiilaiaadkgaaeqaaOGaai ykaaaa@53B7@  

(1.8)

When a least squares fit is done, this results in another exponential of the following form with respect to energy:

τ(E)= τ 0 exp( 1 2 E <E> ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaacI cacaWGfbGaaiykaiabg2da9iabes8a0naaBaaaleaacaaIWaaabeaa kiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaaaadaGcaaqaamaalaaabaGaamyraaqaaiabgYda8iaa dweacqGH+aGpaaaaleqaaaGccaGLOaGaayzkaaaaaa@483B@  

(1.9)

where τ0 is the average occupancy time at E=0 and <E> is the average energy of the entire ensemble of atoms.

Figure 2: Diagram of the animation showing, in orange, the relative energy level occupation times Vs E. The smooth orange curve is a least squares fit to the occupation time.  The coefficient is -1/(twice the square root of <E>) which in this case would be -1/3.5.

3. The Average Energy Change per Scatter

            Although it is not included as a program option, I have separately computed the average energy change as a function of initial energies.  The qualitative result is with initial energies above about 2<E> the energy change is negative while below initial energies of 2<E> the energy change is positive.

 

Figure 3: Diagram showing, in orange, the average energy change per scatter event. The zero of the energy change is the x axis of the plot as shown on the left.  <E>=3 is clearly marked.  At initial energy levels above about 2<E> the energy change is negative while at energy levels below about 2<E> the energy change is positive.  The energy change could probably be fit to a gaussian of the same form as that for the average occupation time.

Mathematics of Hard Sphere Scattering

Atom-Atom Collisions of Different Mass and Velocity

            Here we will consider spherical atoms which have the different masses, m1 and m2, and diameters, D1 and D2.  The centers of the spheres will be labeled (x1,y1,z1) and (x2,y2,z2).  Upon collision, the momentum transferred between the spheres will always be along the unit vector between their centers:

u= [ ( x 1 x 2 ) x ^ +( y 1 y 2 ) y ^ +( z 1 z 2 ) z ^ ] r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a qpdaWcaaqaamaadmaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiqahI hagaqcaiabgUcaRiaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaceWH5bGbaK aacqGHRaWkcaGGOaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadQhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGabCOEayaajaaaca GLBbGaayzxaaaabaGaamOCamaaBaaaleaacaaIXaGaaGOmaaqabaaa aaaa@53F4@  

(1.10)

                                                           

where

r 12 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 + ( z 1 z 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiik aiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaS qaaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUca RiaacIcacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOEam aaBaaaleaacaaIYaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaaa beaaaaa@50A7@  

(1.11)

is the distance between centers.  Since the animation is illustrated in only 2 dimensions, the collision analysis will assume a containing box that is large in the x and y dimensions but very thin in the z dimension. The following vector mathematics is correct for either 2 or three dimensions.

The expression for the final momenta in terms of the initial momenta is:

m 1 v 1 ' + m 2 v 2 ' = m 1 v 1 + m 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaaigdaaeaacaGGNaaa aOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa igdaaeqaaOGaaCODamaaDaaaleaacaaIXaaabaaaaOGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqa aaaaaaa@4955@  

(1.12)

where the apostrophe on the left side of the equations indicates the final velocities.  We know that the energies are conserved so

m 1 v 1 '2 + m 2 v 2 '2 2 = m 1 v 1 2 + m 1 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBamaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGymaaqa aiaacEcacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabe aakiaadAhadaqhaaWcbaGaaGOmaaqaaiaacEcacaaIYaaaaaGcbaGa aGOmaaaacqGH9aqpdaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqaba GccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamyB amaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGOmaaqaai aaikdaaaaakeaacaaIYaaaaaaa@4DD6@  

(1.13)

The directions of the change in momenta are along the vector of centers, u, and the values of the changes of momenta must be equal and opposite.

m 1 Δ v 1 Mδvu= m 2 Δ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWHuoGaaCODamaaBaaaleaacaaIXaaabeaa kiabggMi6kaad2eacqaH0oazcaWG2bGaaCyDaiabg2da9iabgkHiTi aad2gadaWgaaWcbaGaaGOmaaqabaGccaWHuoGaaCODamaaBaaaleaa caaIYaaabeaaaaa@47F5@  

(1.14)

where M has units of mass and is still to be determined.  Using equation 5 in equation 3:

m 1 v 1 ' = m 1 v 1 +Mδvu m 2 v 2 ' = m 2 v 2 Mδvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaaIXaaabeaakiaahAhadaqhaaWcbaGaaGymaaqaaiaa cEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODam aaDaaaleaacaaIXaaabaaaaOGaey4kaSIaamytaiabes7aKjaadAha caWH1baabaGaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa ikdaaeqaaOGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0Iaam ytaiabes7aKjaadAhacaWH1baaaaa@5357@  

(1.15)

Now we can use equation 6 in equation 4 to solve for the value of Mδv.

 

( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@  

(1.16)

where the large dot stands for the dot product and equation 7 simplifies to:

(2 m 1 Mδvu v 1 + M 2 δ v 2 ) 2 m 1 + (2 m 2 Mδvu v 2 + M 2 δ v 2 ) 2 m 2 =0 M 2 δ v 2 ( 1 m 1 + 1 m 2 )+2δvM(u v 1 u v 2 )=0 Mδv= 2 m 1 m 2 u( v 2 v 1 ) m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaGGOaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGnbGa eqiTdqMaamODaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaigdaae aaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMa amODamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiaacIcacqGH sislcaaIYaGaamyBamaaBaaaleaacaaIYaaabeaakiaad2eacqaH0o azcaWG2bGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaa kiabgUcaRiaad2eadaahaaWcbeqaaiaaikdaaaGccqaH0oazcaWG2b WaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikdacaWGTbWaaSba aSqaaiaaikdaaeqaaaaakiabg2da9iaaicdaaeaacaWGnbWaaWbaaS qabeaacaaIYaaaaOGaeqiTdqMaamODamaaCaaaleqabaGaaGOmaaaa kmaabmaabaWaaSaaaeaacaaIXaaabaGaamyBamaaBaaaleaacaaIXa aabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaaikdacqaH0o azcaWG2bGaamytaiaacIcacaWH1bGaeyOiGCRaaCODamaaDaaaleaa caaIXaaabaaaaOGaeyOeI0IaaCyDaiabgkci3kaahAhadaqhaaWcba GaaGOmaaqaaaaakiaacMcacqGH9aqpcaaIWaaabaGaamytaiabes7a KjaadAhacqGH9aqpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaig daaeqaaOGaamyBamaaBaaaleaacaaIYaaabeaakiaahwhacqGHIaYT caGGOaGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODam aaDaaaleaacaaIXaaabaaaaOGaaiykaaqaaiaad2gadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaa aa@9888@  

(1.17)

We can now make the identification:

M= 2 m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamyB amaaBaaaleaacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@40F5@  

(1.18)

where M is known as the "reduced mass".

Equations (1.14) and (1.17) are a complete solution for the final momenta. The final velocities are computed by dividing both sides of equations (1.14) by their respective masses:

v 1 ' = v 1 + 2 m 2 m 1 + m 2 u( v 2 v 1 )u v 2 ' = v 2 2 m 1 m 1 + m 2 u( v 2 v 1 )u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaDaaaleaacaaIXaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWc baGaaGymaaqaaaaakiabgUcaRmaalaaabaGaaGOmaiaad2gadaWgaa WcbaGaaGOmaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGC RaaiikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAha daqhaaWcbaGaaGymaaqaaaaakiaacMcacaWH1baabaGaaCODamaaDa aaleaacaaIYaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWcbaGa aGOmaaqaaaaakiabgkHiTmaalaaabaGaaGOmaiaad2gadaWgaaWcba GaaGymaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGCRaai ikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAhadaqh aaWcbaGaaGymaaqaaaaakiaacMcacaWH1baaaaa@64EE@  

(1.19)

Suppose m2>m1.  Then we see that the magnitude of the speed added to molecule 1 will be larger than the magnitude of  the speed removed from molecule 2.  We can easily see from equation 7, even though the averages of the dot products are zero,  that, on average, the collision results in an increased kinetic energy for atom 1 and a decreased kinetic energy for molecule 2 because of the mass term in the denominators. 

Summary of Results for Average Energies After Collision

After a collision with initial energies E10 and E20 we obtain the following results:

E 1 = E 10 +Mδvu v 1 + (Mδv) 2 2 m 1 = E 10 +M[u( v 2 v 1 )](u v 1 )+ M 2 2 m 1 [u( v 2 v 1 )] 2 E 2 = E 20 Mδvu v 2 + (Mδv) 2 2 m 2 = E 20 M[u( v 2 v 1 )](u v 2 )+ M 2 2 m 2 [u( v 2 v 1 )] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiabg2da9iaadweadaWgaaWcbaGaaGym aiaaicdaaeqaaOGaey4kaSIaamytaiabes7aKjaadAhacaWH1bGaey OiGCRaaCODamaaDaaaleaacaaIXaaabaaaaOGaey4kaSYaaSaaaeaa caGGOaGaamytaiabes7aKjaadAhacaGGPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGaeyyp a0JaamyramaaBaaaleaacaaIXaGaaGimaaqabaGccqGHRaWkcaWGnb Gaai4waiaahwhacqGHIaYTcaGGOaGaaCODamaaDaaaleaacaaIYaaa baaaaOGaeyOeI0IaaCODamaaDaaaleaacaaIXaaabaaaaOGaaiykai aac2facaGGOaGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGymaaqa aaaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaahaaWcbeqaaiaaik daaaaakeaacaaIYaGaamyBamaaBaaaleaacaaIXaaabeaaaaGccaGG BbGaaCyDaiabgkci3kaacIcacaWH2bWaa0baaSqaaiaaikdaaeaaaa GccqGHsislcaWH2bWaa0baaSqaaiaaigdaaeaaaaGccaGGPaGaaiyx amaaCaaaleqabaGaaGOmaaaaaOqaaiaadweadaWgaaWcbaGaaGOmaa qabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaakiab gkHiTiaad2eacqaH0oazcaWG2bGaaCyDaiabgkci3kaahAhadaqhaa WcbaGaaGOmaaqaaaaakiabgUcaRmaalaaabaGaaiikaiaad2eacqaH 0oazcaWG2bGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaca WGTbWaaSbaaSqaaiaaikdaaeqaaaaakiabg2da9iaadweadaWgaaWc baGaaGOmaiaaicdaaeqaaOGaeyOeI0IaamytaiaacUfacaWH1bGaey OiGCRaaiikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaa hAhadaqhaaWcbaGaaGymaaqaaaaakiaacMcacaGGDbGaaiikaiaahw hacqGHIaYTcaWH2bWaa0baaSqaaiaaikdaaeaaaaGccaGGPaGaey4k aSYaaSaaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmai aad2gadaWgaaWcbaGaaGOmaaqabaaaaOGaai4waiaahwhacqGHIaYT caGGOaGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODam aaDaaaleaacaaIXaaabaaaaOGaaiykaiaac2fadaahaaWcbeqaaiaa ikdaaaaaaaa@B0D9@  

(1.20)

 

When the above result is averaged over all angles between u and vi that actually lead to a collision i.e. u.(v2-v1)<0 we obtain:

< E 1 >= E 10 M v 1 2 2 + M 2 4 m 1 ( v 2 2 + v 1 2 )= E 10 M( E 10 m 1 )+ M 2 2 m 1 ( E 10 m 1 + E 20 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcqGH9aqpcaWGfbWaaSba aSqaaiaaigdacaaIWaaabeaakiabgkHiTmaalaaabaGaamytaiaadA hadaqhaaWcbaGaaGymaaqaaiaaikdaaaaakeaacaaIYaaaaiabgUca RmaalaaabaGaamytamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaca WGTbWaaSbaaSqaaiaaigdaaeqaaaaakiaacIcacaWG2bWaa0baaSqa aiaaikdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaIXa aabaGaaGOmaaaakiaacMcacqGH9aqpcaWGfbWaaSbaaSqaaiaaigda caaIWaaabeaakiabgkHiTiaad2eadaqadaqaamaalaaabaGaamyram aaBaaaleaacaaIXaGaaGimaaqabaaakeaacaWGTbWaaSbaaSqaaiaa igdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamytam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbWaaSbaaSqaaiaa igdaaeqaaaaakmaabmaabaWaaSaaaeaacaWGfbWaaSbaaSqaaiaaig dacaaIWaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGa ey4kaSYaaSaaaeaacaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaO qaaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaa aa@6B05@  

(1.21)

< E 2 >= E 20 M v 2 2 2 + M 2 4 m 2 ( v 2 2 + v 1 2 )= E 20 M( E 20 m 2 )+ M 2 2 m 2 ( E 10 m 1 + E 20 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eadaWgaaWcbaGaaGOmaaqabaGccqGH+aGpcqGH9aqpcaWGfbWaaSba aSqaaiaaikdacaaIWaaabeaakiabgkHiTmaalaaabaGaamytaiaadA hadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaiabgUca RmaalaaabaGaamytamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaca WGTbWaaSbaaSqaaiaaikdaaeqaaaaakiaacIcacaWG2bWaa0baaSqa aiaaikdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaIXa aabaGaaGOmaaaakiaacMcacqGH9aqpcaWGfbWaaSbaaSqaaiaaikda caaIWaaabeaakiabgkHiTiaad2eadaqadaqaamaalaaabaGaamyram aaBaaaleaacaaIYaGaaGimaaqabaaakeaacaWGTbWaaSbaaSqaaiaa ikdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamytam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbWaaSbaaSqaaiaa ikdaaeqaaaaakmaabmaabaWaaSaaaeaacaWGfbWaaSbaaSqaaiaaig dacaaIWaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGa ey4kaSYaaSaaaeaacaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaO qaaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaa aa@6B0D@  

(1.22)

 

Summary of Average Energy Results for m1=m2=m

 

When m1=m2=m so that M=m the results for average E, <E> , are easily seen from equations (1.21) and (1.22) to be:

< E 1 >= E 10 + E 20 2 =< E 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcqGH9aqpdaWcaaqaaiaa dweadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaey4kaSIaamyramaaBa aaleaacaaIYaGaaGimaaqabaaakeaacaaIYaaaaiabg2da9iabgYda 8iaadweadaWgaaWcbaGaaGOmaaqabaGccqGH+aGpaaa@461F@  

(1.23)

With a little more difficulty the results for the variances of E, <ΔΕ>,  are given by the following equations:

<Δ E 1 >= E 10 + E 20 4 =<Δ E 2 >when E 10 = E 20 <Δ E 1 >= 2 E 10 + E 20 4 =<Δ E 2 >when E 10 =0or E 20 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaeuiLdqKaamyramaaBaaaleaacaaIXaaabeaakiabg6da+iabg2da 9maalaaabaGaamyramaaBaaaleaacaaIXaGaaGimaaqabaGccqGHRa WkcaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaOqaaiaaisdaaaGa eyypa0JaeyipaWJaeuiLdqKaamyramaaBaaaleaacaaIYaaabeaaki abg6da+iaaykW7caWG3bGaamiAaiaadwgacaWGUbGaaGPaVlaaykW7 caWGfbWaaSbaaSqaaiaaigdacaaIWaGaaGPaVdqabaGccqGH9aqpca WGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaOqaaiabgYda8iabfs5a ejaadweadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcqGH9aqpdaGcaa qaaiaaikdaaSqabaGcdaWcaaqaaiaadweadaWgaaWcbaGaaGymaiaa icdaaeqaaOGaey4kaSIaamyramaaBaaaleaacaaIYaGaaGimaaqaba aakeaacaaI0aaaaiabg2da9iabgYda8iabfs5aejaadweadaWgaaWc baGaaGOmaaqabaGccqGH+aGpcaaMc8Uaam4DaiaadIgacaWGLbGaam OBaiaaykW7caaMc8UaamyramaaBaaaleaacaaIXaGaaGimaiaaykW7 aeqaaOGaeyypa0JaaGimaiaaykW7caaMc8Uaam4BaiaadkhacaaMc8 UaamyramaaBaaaleaacaaIYaGaaGimaaqabaGccqGH9aqpcaaIWaaa aaa@85A3@  

(1.24)

Discussion of Scattering for Equal Mass Atoms.

So, what really happens when the masses are equal, is that the energies redistribute themselves into a gaussian-like pattern with the gaussian width greater when the energy differences are greater.  Of course, the minimum outcome for any energy is always zero, so the distribution tends to become biased toward its E=0 end. 

 

If we start with mono-energetic atoms, E0, so that Etotal=2E0, then the first variance will always be 0.250E0.  A fraction of these scattered atoms will have energy 2E0 and an exactly equal fraction will have zero energy.  The next scattering, when with atoms with energies E0, can result in energies from zero energy up to 3E0.  When the next scattering is between 2 atoms that have energy of 2E0 the final energy can be as large as 4E0 but that is a very unlikely event.  Of course, since neither is moving, atoms with zero energy don't scatter with other atoms of zero energy so these latter remain at zero energy.  In fact the number of scatterings per second depends on the energy of the atoms, so this makes  all the lower energy atoms less likely to scatter with similar low energy atoms.

We could write the following approximate differential equation for the rate of scattering of atoms

dN dt =nσ v r nσ 2 E 1 m 1 + 2 E 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGUbGaeq4WdmNa amODamaaBaaaleaacaWGYbaabeaakiabg2Hi1kaad6gacqaHdpWCda GcaaqaamaalaaabaGaaGOmaiaadweadaWgaaWcbaGaaGymaaqabaaa keaacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaaba GaaGOmaiaadweadaWgaaWcbaGaaGOmaaqabaaakeaacaWGTbWaaSba aSqaaiaaikdaaeqaaaaaaeqaaaaa@4D71@  

(1.25)

where n is the atom density, vr is some average relative speed, and σ is the collision cross section.  Thus the rate of change of energies via scattering depends on the sum of the velocities of the two atoms involved.  This is one of the mechanisms that I think would cancel out the usual tendency for the  atoms to form a symmetric gaussian distribution centered at the average energy.  The other mechanism is that, while any energy higher than the average energy is possible, the minimum energy is always zero so a lot of atoms tend to accumulate near the zero end of the number Vs energy distribution.

            We can also say that there are few high energy atoms because they scatter quite often so that they usually get their energies degraded by scattering with lower energy atoms and become "thermalized".