Convex Lens Best Focus Distance

Calculations

In the limit where the radial displacement, r, is much less than the radius of curvature, R, we will find the distance, f, where the total optical phase path is independent of r.

 

Figures

Figure 1: The red rays are inside the lens while the black rays are in air.  Therefore the optical path length for the red rays is their lengths multiplied by the index of refraction of the lens while the optical path length for the blach rays us just their lengths.

 

The difference in path lengths for the rays in the lens is

s(0)s(r)δ s lens =R R 2 r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacaGGOa GaaGimaiaacMcacqGHsislcaGGZbGaaiikaiaackhacaGGPaGaeyyy IORaeqiTdqMaam4CamaaBaaaleaacaWGSbGaamyzaiaad6gacaWGZb aabeaakiabg2da9iaadkfacqGHsisldaGcaaqaaiaadkfadaahaaWc beqaaiaaikdaaaGccqGHsislcaWGYbWaaWbaaSqabeaacaaIYaaaaa qabaaaaa@4CFC@  

(0.1)

 

The difference in the starting x coordinate between the air ray a the lens center and the air ray at the r location of the lens is also δ s lens MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaado hadaWgaaWcbaGaamiBaiaadwgacaWGUbGaam4Caaqabaaaaa@3C7B@  

Therefore the difference in lengths of the air rays is

s air (r) s air (0)= (f+δ s lens ) 2 + r 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaWgaa WcbaGaamyyaiaadMgacaWGYbaabeaakiaacIcacaGGYbGaaiykaiab gkHiTiaadohadaWgaaWcbaGaamyyaiaadMgacaWGYbaabeaakiaacI cacaaIWaGaaiykaiabg2da9maakaaabaGaaiikaiaadAgacqGHRaWk cqaH0oazcaWGZbWaaSbaaSqaaiaadYgacaWGLbGaamOBaiaadohaae qaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadkhadaah aaWcbeqaaiaaikdaaaaabeaakiabgkHiTiaadAgaaaa@5398@  

(0.2)

The difference in optical path length can now be written:

p(r)p(0)=s(r)s(0)n R 2 r 2 = ( f+R R 2 r 2 ) 2 + r 2 ( f+n(R R 2 r 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiCai aacIcacaWGYbGaaiykaiabgkHiTiaadchacaGGOaGaaGimaiaacMca cqGH9aqpcaWGZbGaaiikaiaadkhacaGGPaGaeyOeI0Iaam4CaiaacI cacaaIWaGaaiykaiabgkHiTiaad6gadaGcaaqaaiaadkfadaahaaWc beqaaiaaikdaaaGccqGHsislcaWGYbWaaWbaaSqabeaacaaIYaaaaa qabaaakeaacqGH9aqpdaGcaaqaamaabmaabaGaamOzaiabgUcaRiaa dkfacqGHsisldaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccq GHsislcaWGYbWaaWbaaSqabeaacaaIYaaaaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGYbWaaWbaaSqabe aacaaIYaaaaaqabaGccqGHsisldaqadaqaaiaadAgacqGHRaWkcaWG UbGaaiikaiaadkfacqGHsisldaGcaaqaaiaadkfadaahaaWcbeqaai aaikdaaaGccqGHsislcaWGYbWaaWbaaSqabeaacaaIYaaaaaqabaGc caGGPaaacaGLOaGaayzkaaaaaaa@67A7@  

(0.3)

 

Now, if the reader can bear with me I will show that f>>r just if R>r so I may expand the square roots to first order in a Taylor series.

The expression for dslens expands to:

δ s lens r 2 2R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaado hadaWgaaWcbaGaamiBaiaadwgacaWGUbGaam4CaaqabaGccqGHijYU daWcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaam Ouaaaaaaa@41C2@  

(0.4)

so that the optical path difference can now be written:

p(r)p(0) ( f+ r 2 2R ) 2 + r 2 ( f+n r 2 2R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacaGGOa GaamOCaiaacMcacqGHsislcaWGWbGaaiikaiaaicdacaGGPaGaeyis IS7aaOaaaeaadaqadaqaaiaadAgacqGHRaWkdaWcaaqaaiaadkhada ahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamOuaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGYbWaaWbaaSqabe aacaaIYaaaaaqabaGccqGHsisldaqadaqaaiaadAgacqGHRaWkcaWG UbWaaSaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmai aadkfaaaaacaGLOaGaayzkaaaaaa@524B@  

(0.5)

Since f>>r we can now expand the square root term to yield:

p(r)p(0)f ( 1+ r 2 2fR ) 2 + r 2 f 2 ( f+n r 2 2R ) f 1+ 2 r 2 2fR + r 2 f 2 ( f+n r 2 2R ) f+ r 2 2R + r 2 2f ( f+n r 2 2R )= r 2 ( 1 2f + 1 2R n 2R )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiCai aacIcacaWGYbGaaiykaiabgkHiTiaadchacaGGOaGaaGimaiaacMca cqGHijYUcaWGMbWaaOaaaeaadaqadaqaaiaaigdacqGHRaWkdaWcaa qaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamOzaiaa dkfaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaS YaaSaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOzamaa CaaaleqabaGaaGOmaaaaaaaabeaakiabgkHiTmaabmaabaGaamOzai abgUcaRiaad6gadaWcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaa keaacaaIYaGaamOuaaaaaiaawIcacaGLPaaaaeaacqGHijYUcaWGMb WaaOaaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIYaGaamOCamaaCaaa leqabaGaaGOmaaaaaOqaaiaaikdacaWGMbGaamOuaaaacqGHRaWkda WcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaWGMbWaaWba aSqabeaacaaIYaaaaaaaaeqaaOGaeyOeI0YaaeWaaeaacaWGMbGaey 4kaSIaamOBamaalaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaOqa aiaaikdacaWGsbaaaaGaayjkaiaawMcaaaqaaiabgIKi7kaadAgacq GHRaWkdaWcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaaI YaGaamOuaaaacqGHRaWkdaWcaaqaaiaadkhadaahaaWcbeqaaiaaik daaaaakeaacaaIYaGaamOzaaaacqGHsisldaqadaqaaiaadAgacqGH RaWkcaWGUbWaaSaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaGcba GaaGOmaiaadkfaaaaacaGLOaGaayzkaaGaeyypa0JaamOCamaaCaaa leqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmai aadAgaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaadkfaaaGa eyOeI0YaaSaaaeaacaWGUbaabaGaaGOmaiaadkfaaaaacaGLOaGaay zkaaGaeyypa0JaaGimaaaaaa@90A0@  

(0.6)

If r is not zero then we have the equation:

1 f + 1 R n R =0 f= R n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaaIXaaabaGaamOzaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWG sbaaaiabgkHiTmaalaaabaGaamOBaaqaaiaadkfaaaGaeyypa0JaaG imaaqaaiaadAgacqGH9aqpdaWcaaqaaiaadkfaaeaacaWGUbGaeyOe I0IaaGymaaaaaaaa@4426@  

(0.7)